Full text: Bernoulli, Daniel: Hydrodynamica s. de viribus et motibus fluidorum commentarii

SECTIO TERTIA. ubi pro noſtro caſu præſente intelligitur per v altitudo quæſita reſpondens ve-
locitati ſuperficiei aqueæ in ſitu F, per ξ longitudo B D E F & per x altitudo
B G, atque per {m/n} index rationis inter amplitudines tubi & foraminis B: Quod
ſi vero dicatur longitudo B D A = αerit x = {ξ - α/g}, unde nunc habetur
v = ξ {mm/nn} - 1} ſ - ({ξ - α/g}) ξ {- mm/nn}

Indicetur longitudo totius canalis B D E C per β, & erit
ſ - ({ξ - α/g} ξ {- mm/nn} dξ = {nnα/g(nn - mm)} (ξ {nn - mm/nn} - β {nn - mm/nn} })
{- nn/g(2nn - mm)} (ξ {2nn - mm/nn} - β {2nn - mm/nn} )
atque proinde
v = {nnα/g(nn - mm)}(1 - ({β/ξ}) {nn - mm/nn} )
- {nnξ/g(2nn - mm)}(1 - ({β/ξ}) {2nn - mm/nn} ). Q. E. I.

46. Scholium.

§. 27. Quoniam hæ æquationes ſunt paullo prolixiores @non immora-
bimur generali earundem contemplationi, conſideraturi potius caſus iſtos
particulares, qui calculum abbreviant, nec ultima iſta æquatione definiri
poſſunt.

Si operculum in B omne abeſſe ponamus, fit m = n & (quod ſeorſim
pro hoc pariter atque @altero caſu mox dicendo erui debet)
v = {b - ξ + αlog. ξ - αlog. β/g}
tuncque velocitas maxima eſt in A, nominatimquæ talis, quæ reſpondet al-
titudini {β - α + αlog. α - αlog. β. /g}

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer