# Full text: Bernoulli, Daniel: Hydrodynamica s. de viribus et motibus fluidorum commentarii

SECTIO TERTIA. (1 - {mm/nn})vdz + zdv = - zdz - bdz + {mbdz/√gn}
quæ multiplicata per z {-mm/nn} facit
(1 - {mm/nn})z - {mm/nn} vdz + z 1 - {mm/nn} dv = - z 1 - {mm/nn} dz - bz - {mm/nn} dz +
{mbz - {mm/nn} dz/√gn}
poſt cujus integrationem addita conſtante Coritur
z {nn - mm/nn} v = C - {nn/2nn - mm} z {2nn - mm/nn} - {nnb/nn - mm} z {nn - mm/nn}
+ {mnnb/(nn - mm)√gn} z {nn - mm/nn}
in quo valor quantitatis conſtantis C ex eo definitur quod ab initio fluxus
(cum nempe x = a ſive z = a - b + {mb/√gn}) ſit v = o quia non poteſt motus
oriri in inſtanti temporis puncto; hinc igitur fit C =
[(a - b + {mb/√gn}) X {nn/2nn - mm} + {nnb√gn - mnnb/(nn - mm)√gn}] X (a - b + {mb/√gn}) {nn - mm/nn}
Ex his quidem æquationibus definiuntur omnia; quia verò calculus fit paullo
prolixior, niſi amplitudo vaſis ſuperioris indicata per m tanta ſit, ut poſſit ra-
tione amplitudinum g & n infinita cenſeri, hunc ſolum conſiderabimus caſum,
idque eo magis quod error notabilis inde non oriatur, etſi mediocris ſit ma-
gnitudinis numerus {m/n} aut {m/g}

§. 23. Quod ſi proinde ponamus m = ∞, ſimulque utamur pri-
mâ æquatione differentiali proximi paragraphi, atque in hâc ponatur
v = {nn/mm}s, ut ſic inveniatur ex valore litteræ s altitudo ad quam aqua per ori-
ficium M N effluens ſuâ velocitate aſcendere poſſit, erit primo
{nn/m} (x - b)ds + {bnn/√gn}ds - msdx + {nn/m}sdx = - mxdx
& quia m = ∞ atque facile prævidetur rationem ſore finitam inter s & x, at-
que inter ds & dx, hæc eadem æquatio mutabitur rejectis terminis rejiciendis
rurſus in hanc - msdx = - mxdx vel s = x, quod pariter paragr. 10.

## Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.