Full text: Bernoulli, Daniel: Hydrodynamica s. de viribus et motibus fluidorum commentarii

SECTIO SEPTIMA. cujus ſecundus terminus z d v rurſus præ primo negligi poteſt, ita vero
habetur
adv + nnvdz = (c - z)dz.

Ponatur hic (ſumto α pro numero, cujus logarithmus hyperbolicus eſt
unitas) v = {1/nn}α {-nnz/a} q; hoc modo mutabitur poſtrema æquatio in hanc
α{-nnz/a}adq = nn (c - z)dz, vel
adq = nnα {nnz/a} X (c - z)dz:

Hæc vero ita eſt integranda, ut z & v vel etiam z & q ſimul evane-
ſcant; habebitur igitur
q = (c + {a/nn} - z)α {nnz/a} - c - {a/nn}, vel denique
v = {1/nn} (c + {a/nn} - z) - {1/nn} (c + {a/nn})α {-nnz/a} ;

Ex iſta vero æquatione deducitur:

I. Oriri rurſus, ut paragrapho decimo alia mathodo inventum fuit,
v = {2cz - zz/2a}, ſi nempe rurſus ponatur {nnz/a} numerus valde parvus, Id ve-
ro ut pateat, reſolvenda eſt quantitas exponentialis α {-nnz/a} in ſeriem, quæ
eſt ipſi æqualis, 1 - {nnz/a} + {n 4 zz/2aa} - {n 6 z 3 /2. 3a 3 } + & c. ex quâ pro noſtro
ſcopo tres priores termini ſufficiunt; eo autem ſubſtituto valore rejectoque
termino rejiciendo, reperitur ut dixi
v = {2cz - zz/2a}

II. At ſi viciſſim {nn/1} infinites major ponatur quam {a/z} aut {a/c}, quia tunc
α{-nnz/a} = o, ut & {a/nn} = o, fieri intelligitur v = c - z, ſive v = x - b,
ut §. 4.

III. Neutram vero præmiſſarum formularum ſine notabili errore lo-
cum habere patet, cum {nnc/a}, numerus eſt mediocris, nempe nec infinitus,
nec infinite parvus, & tamen utraque quantitas {nn/1} & {a/c} infinita.

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer