Full text: Belidor, Bernard Forest de: Nouveau cours de mathématique à l' usage de l' artillerie et du génie

DE MATHÉMATIQUE. Liv. XIV. pareille vîteſſe cauſée par la même peſanteur; par la même
raiſon les vîteſſes des deux premiers inſtans ſubſiſteroient avec
celles du troiſieme inſtant; & ainſi les vîteſſes de tous ces pre-
miers inſtans ſubſiſteroient avec les vîteſſes que ce même corps
recevroit dans chacun des inſtans ſuivans, ou bien (ce qui eſt
la même choſe) lorſqu’un corps tombe, ce corps reçoit des
parties égales de vîteſſe dans des tems égaux, en ſuppoſant
que l’action de la peſanteur eſt uniforme, & négligeant la
réſiſtance de l’air.

938. PROPOSITION II.
Theoreme .

952. Un corps qui tombe reçoit des degrés égaux de vîteſſe
dans des tems égaux; de ſorte que dans le ſecond inſtant il a une
vîteſſe double de celle qu’il avoit dans le premier inſtant de ſa chûte,
& dans le troiſieme il en a une triple, & ainſi des autres.

939. Démonstration .

Puiſqu’un corps qui tombe eſt continuellement pouſſé en
bas, par l’action de ſa peſanteur, qui eſt toujours la même
(art. 951), il s’enſuit que la peſanteur doit donner à ce corps,
à chaque inſtant de ſa chûte des degrés égaux de vîteſſe: donc
puiſque les degrés de vîteſſe que le corps a reçus en premier
lieu ſubſiſtent entiérement avec ceux qu’il auroit reçus en der-
nier lieu (art. 951), le corps en tombant ſe trouve avoir au-
tant de degrés de vîteſſe, cauſés par ſa peſanteur, qu’il s’eſt
écoulé de momens depuis le commencement de ſa chûte juſ-
qu’au moment que l’on compte: donc ce corps aura à la fin
du ſecond inſtant une vîteſſe double de celle du premier, au
troiſieme inſtant une vîteſſe triple, & c. C. Q. F. D.

940. Corollaire .

953. Il ſuit delà que les degrés de vîteſſe qu’un corps a ac-
quis à la fin de chaque inſtant de chûte, ſont comme les tems
qui ſe ſont écoulés depuis le commencement de ſa chûte: donc
puiſque les inſtans écoulés depuis le premier moment de la
chûte ſont en progreſſion arithmétique, les degrés de vîteſſe
acquis à la fin de ces tems ſont auſſi en progreſſion arithmé-
tique.

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer