Full text: Pergaeus, Apollonius: Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi

Apollonij Pergæi las A O, K H ſunt anguli alterni A O K, & H K O æquales inter ſe; igitur
angulus A O K æqualis erit angulo C A H; & propterea in duobus triangulis
K A O, & H C A tertius angulus A C H æqualis erit tertio angulo K A O,
& propterea triangulum K A O iſoſcelium, & ſimile erit triangulo H A C,
ſiuè F G E; igitur conus, cuius vertex K baſis circulus A O perpendicularis
ad planum trianguli A K O erit conus rectus, & ſimilis cono E F G dato.

248.1.

C
0298-01

Alioquin contineat illum conus alius, cuius vertex ſit Q, & triangu-
lum Q A P, & oſtendetur quemadmodum dictum eſt, quod planum
tranſiens per axim illius coni erectum ad planum ſectionis A B C ſectio
communis cum plano ſectionis eſt A C, & quod punctum verticis illius
coni ſit in circumferentia ſegmenti A H C, & c. Quia ſupponitur, quod
conus Q A P ſimilis cono E F G contineat ellipſim A B C, cuius axis tranſuer-
ſus C A, & latus rectum A D; igitur triangulum per axim coni ductum Q
A P, nedum ſimile erit triangulo E F G, ſed etiam perpendiculare erit ad pla-
num ellipſis A B C, & propterea conſiſtet in plano circularis ſegmenti A H C
pariter erecti ad planum A B C, per idem axim A C extenſum, & eſt angu-
lus A Q C æqualis angulo verticali F propter ſimilitudinem duorum triangu-
lorum, & ex conſtructione primæ partis huius propoſitionis, eſt ſegmentum A
H C capax anguli æqualis angulo F; ſecaturque bifariam in H; igitur angulus
A Q C æqualis ipſi F in peripheria ſegmenti A H C exiſtit. Ducatur poſtea
Q S parallela lateri tranſuer ſo ellipſis A C, quæ ſecet baſim trianguli per axim
Q A P productam in S, & à puncto H bipartitæ diuiſionis ſegmenti A H C
coniungatur recta linea H Q producaturq; quouſq; occurratrectæ lineæ C A in R. Quoniã duo anguli A H C, & A Q C in eodẽ circuli ſegmento conſtituti æqua-
les ſunt inter ſe; pariterq; duo anguli C A H, & C Q H in eodẽ circuli ſegmento
exiſtentes ſunt æquales, & eſt angulus A P Q æqualis angulo P A Q in triangu-
lo iſoſcelio Q A P; & angulus P A Q æqualis angulo C A H in triangulis ſimi-
libus; igitur angulus A P Q æqualis eſt alterno angulo P Q H; & propterea

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer