Full text: Pergaeus, Apollonius: Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi

Apollonij Pergæi cireuli G C O B, & G Q P L ſe ſe contingentes in communi puncto G rectæ li-
neæ G O ducaturque diameter L b Q æquidiſtans ipſi B C: & vt latus rectum
ad tranſuer ſum ſectionis X, ita fiat quadratum G d ad quadratum d A; & coniungantur rectæ lineæ A G, & A O, ducaturque ex puncto P recta linea P
N parallela ipſi O A occurrens G A in N, atque A, & N fiant vertices duorum
conorum A B C, & N L Q, & ſecetur D d æqualis ſemiſſi potentis figuram
ſectionis X; ducaturque per punctum D planum E M F æquidiſtans plano com-
muni A G O per axes ducto, efficiens in conicis ſuperficiebus ſectiones H I K, & T V c; Dico eas eſſe hyperbolas quæſitas. Quoniam propter parallelas A O, N
P eſt A G ad G O, vt N G ad G P, & ad ſemißes conſequentium, ſcilicet A G
ad G d, atque N G ad G b proportionales erunt, ideoque A d, N b erunt pa-
rallelæ, & A d ad d G, ſeu ad d C eſt vt N b ad b G, ſeu ad b Q; eſtque
d C etiam parallela b Q; ergo plana A B C, & N L Q parallela ſunt, & anguli A d C, & N b Q æquales ſunt, atque triangula A d C, & N b Q
ſimilia crunt inter ſe; ideoque circa angulos æquales C, & Q erit A C ad C d,
vt N Q ad Q b, & ad conſequentium duplas, ſcilicet A C ad C B, atq; N Q
ad Q L proportionales erunt; & propterea triangula A B C, & N L Q ſimilia
exunt, & ſimiliter poſita, & inter ſe parallela; ergo efficient in duobus planis A O
G, & M E F inter ſe æquidiſtantibus ſectionũ diametros I D, & V a parallelas
conorũ axibus A d, & N b, & inter ſe; quare conſtituent cum ſectionũ baſibus

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer