Full text: Pergaeus, Apollonius: Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi

Apollonij Pergæi Rectæ lineæ parallelæ B E, C F ſe-
cent æquidiſtantes aſymptotos H G,
L K in punctis N [?] , O, P, Q. De-
bent autem coniſectiones in eodem pla-
no collocari ſicuti aliæ omnes, quæ in. ſequentibus propoſitionibus 4. 5. 6. 7. 8. & 9. vſurpantur ſemper in vno
plano poſitæ intelligi debent.

234.1.

0250-01

Et primo duæ rectæ B E, C F paralle-
læ ſint rectæ lineæ H L centra coniungen-
ti. Quoniam hyperbolæ A B, D E æqua-
les ſunt, & congruentes; atque æquidiſtan-
tes asymptoti H N, L P æque inclinan-
tur ad æquales ſemiaxes tranſuerſos H
A, & L D; & ſegmenta asymptotorum H N, L P æqualia ſunt in paralle-
logrammo H P, nec non duo anguli H N B, & L P E æquales ſunt inter ſe, pro-
pter parallelas asymptotos: igitur duæ figuræ A H N B A, & D L P E D æquales
erunt, & congruentes: quapropter interpoſitæ rectæ lineæ N B & P E congruẽ-
tes, & æquales erunt; & addita vel ablata communi B P, erit N P æqualis
B E: eſt verò N P æqualis H L, eo quod H P parallelogrammum eſt; igitur
intercepta B E æqualis eſt rectæ lineæ H L centra coniungenti. Eadem ratione
quælibet alia intercepta C F parallela ipſi H L eidem æqualis oſtendetur: qua-
propter duæ interceptæ æquidiſtantes B E, & C F inter ſe æquales erunt.

Secundo B E, C F parallelæ ſint alicui rectæ lineæ L f diuidenti angulum K
L H; ideoque P L f N, & Q L f O parallelogramma erunt: ſecetur L T æqua-
lis H N, atque L V æqualis H O; ducan-
turque T X, V Z parallelæ ipſis N B, O
C ſecantes reliquam hyperbolen in X, Z; eritque ( vt in prima parte oſtenſum eſt)
T X æqualis N B, atque V Z æqualis O C. Et ſiquidem B E, C F cadunt infra cen-
tra H, L ad partes G, K, cadent quoque
infra L f eis parallelam per L ductam in-
fra centrum H incidentem, & ideo N f,
ſeu ei æqualis P L in parallelogrãmo P f
minor erit, quàm H N; eſtque L T æqua-
lis H N; igitur L P minor erit, quàm L T ; & propterea punctum P propin-
quius erit centro L, quàm T: Eadem ratione oſtendetur, quod punctum Q pro-
pinquius ſit centro L, quàm V, & P propinquius centro quàm Q; ergo quatuor
æquidiſtantium P E, Q F, T X, V Z cadentium infra centrum ad partes K,
duæ P E, T X vlterius ad partes centri, vel asymptoti L M tendunt, quàm,
duæ Q F, V Z. At ſi B E, C F ſecent rectã lineam centra coniungentem inter
duo centra H, & L, manifeſtum eſt puncta P, & Q cadere ſupra centrum L,
atque duo puncta N, & O cadere infra centrnm H alterius hyperboles, cumque
L T ſecta ſit æqualis ipſi H N ad eaſdem partes; pariterque L V æqualis ipſi

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer