Full text: Musschenbroek, Petrus: Physicae experimentales, et geometricae de magnete, tuborum capillarium vitreorumque speculorum attractione, magnitudine terrae, cohaerentia corporum firmorum dissertationes

INTRODUCTIO AD COHÆRENTIAM pendiculari, habebit momentum gravitatis, ad momentum ſegmen-
ti a A F G H, cujus baſis F G H eſt parallela ad B D C E, uti Cohæ-
rentia B D C E, eſt ad Cohærentiam F G H.

Vocetur A D, a. D B, b. D C, c. a G, x. erit G F = {b x x. /a a} Eſt
vero planum a G F = {1/3} a G X G F = {1b x 3 /3a a} & ſoliditas corporis
A a H G F = {b c x 3 . /3 a a} Cohærentia baſeos F G H ={b b x 4 c. /a 4 } momen-
tum vero = {b c x 4 /12 a a}. quia centrum gravitatis in plano a D B, diſtat ab
F G = {1/4} a G. ſoliditas corporis a A D B C eſt {1/3} a b c. momentum
= {a ab c. /12} & Cohærentia baſeos D B C = b b c. Eſt vero
{a a b c. /12} b b c: : {b c x 4 . /12 a a} {b b c x 4 . /a 4 }

Quare hoc ſolidum ſe [?] iſſum in quocunque loco ſectione parallelâ
ad baſin B D C, ſemper habebit momenta ſuæ gravitatis in ratione
Cohærentiæ baſium.

563. PROPOSITIO LXXXIV.

Tab. XXVI fig. 9. Dato Cuneo paraboliformi D C O B F cujus
baſis D C O B parieti perpendiculari ad horizontem ſit infixa, axis
parabolæ A F, invenire momentum gravitatis, Cohærentiam ba-
ſeos, at que eadem in ſegmento K E G F, cujus baſis K E G ſit pa-
rallela ad C D B O.

Vocetur C O, a. O B, b. A F, d. invenietur ſoliditas Cunei pa-
rabolici D C O B F = {2/3} a b d. diſtantia Centri gravitatis a baſi D C O B
in ſegmento horizontali A F, eſt = {2/7} A F = {2/7} d. adeoque erit momen-
tum Cunei ex gravitate = {4/35} a b d d. eſt vero Cohærentia baſeos = a a b. adeoque erit momentum ex gravitate ad Cohærentiam uti {4/35} d d
ad a. Vocetur H F x. erit Cohærentia baſeos. K E G = {a a b x 2 . /d d}
& momentum ex gravitate = {4 a b x{7/2}. /35 d{3/2}}

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer