Full text: Cavalieri, Bonaventura: Geometria indivisibilibvs continvorvm

Series ſpatiorum 1. 2. 3. 4. 5. 6. 7.

Series numerorum 1. 7. 19. 37. 61. 91. 127.

0483-01

cum {1/3}. quadrati, CB, ſi ergo, AB, ſtatuatur 3. erit, AC, 6. rectan-
gulum, CAB, 18. tertia pars quadrati, BC, erit 3. quæ iuncta ipſi
18. efficit 21. erit ergo qualium partium quadratum, AB, eſt 9. re-
ctangulum, CAB, cum tertia parte quadrati, BC, 21. & tertia pars
quadrati, AB, eſt 3. eſt igitur ſpatium, AIN, ad trilineum, AMN,
vt 3. ad 21. ideſt vt 1. ad 7. Eodem modo reperiemus trilineum, A
NM, ad, AMH, eſſe vt 7. ad 19. & hoc ad trilineum, AHF, vt 19. ad 37. & ſic deinceps, prout indicat ſeries numerorum ſupra poſi-
ta, quod demonſtrandum erat.

648. COROLLARIV M.

_H_Inc patet ſi expoſita ſint ſpirales in quotcunque reuolutionibus
genitæ, initio circulationis exiſtente in, K, ſint autem volutæ
ipſæ, KL, LO, OP, PG, & ſpirales eodem ordine procedentes, KRL, L
SO, OTP, PVG, quod ſi, KG, fuerit æqualis ipſi AE, & diuiſa in pun-
ctis, L, O, P, prout diuiditur, AE, in punctis, B, C, D, ſpatium, KRL,
erit æquale ſpatio, AIN, & , LSO, trilineo, AMN, & , OTP, trili-
neo, AMH, & tãdem, PVG, trilineo, AHF, & ſic deinceps, vnde
etiam hæc ſpatia ſe habebunt, prout indicat ſuprapoſita ſeries nume-

648.1.

_Elicitur e@_
_9. huius._
_Elicitur_
_15. huiur._

Secunda ſeries num. 1. 6. 12. 18. 24. 30. 36.

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer