Full text: Cavalieri, Bonaventura: Geometria indivisibilibvs continvorvm

GEOMETRIÆ ſimilia, & ex ratione, quæ in huius Theorematis ſupradi-
ctis caſibusinter illa duorectangula primò loco expoſita
fuit.

Sint aſſumptę quęcunq; hyperbolę, BAD, HMQ, circa axes,
vel diametros, AC, MP, circa quas ſint quoq; triangula, BAD, H
MQ, & in baſibus, BD, HQ, latus autem tranſuerſum hyperbolę,
BAD, ſit, GA, cuius ſexquialtera, VA; & larus tranſuerſum hy-
perbolę, HMQ, ſit, MX, cuius ſexquialtera, MR, ſint autem ex-
poſitæ duæ vtcunque rectæ lineæ, FY, EN. Dico omnia qua-
drata hyperbolę, BAD, regula, BD, ad omnia quadrata hyper. perbolę, HMQ, regu-
la, HQ, habereratio-
nem compoſitã ex ea,
quam habet rectangu-
lum ſub, VC, XP, adre-
ctangulum ſub RP, C
G, & ex ea, quam ha-
bet parallelepipedum
ſub altitudinehyperbo-
lę, BAD, & ſub qua-
drato, BD, ad paralle-
lepipedum ſub altitu-
dine hyperbolę, HMQ,
baſi quadrato, HQ; quod oſtendemus ad
modum Propoſ. 10. Si
verò comparentur om-
nia quadrata hyperbolæ, BAD, ad omnia rectangula hyperbolæ,
HMQ, ſimilia rectangulo ſub, HQ, EN, oſtendemus illa ad hæc
habere rationem compoſitam ex ratione primò dicta inter illa re-
ctangula, & ex ratione parallelepipedi ſub altitud ne hyperpolæ,
BAD, baſiquad ato, BD, ad parallelepipedum ſub altitudine hy-
perbolæ, HMQ, baſi rectangulo ſub, HQ, EN; hocq; oſtende-
mus iuxta methodum Propol. antecedentis. Sitandem compa. rentur omnia rectangula hyperbolæ, BAD, ſimilia rectangulo ſub,
BD, FY, ad omnia rectangula hy perbolæ, HMQ, ſimilia rectan-
gulo ſub, HQ, EN, oſten demus propoſitum de his hoc pacto: Nã
omnia rectangula hyperbolæ, BAD, ſimilia rectangulo ſub, BD,
FY, ad omnia quadrata eiuſdem, BAD, ſunt vt rectangulum ſub,
BD, FY, ad? ? quadratum, BD, . i. vt parallelepipedum ſub altitudi-

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer