GEOMETRIÆ
lineæ erunt interſe, vtrectangula ſub partibus baſis ab ei-
ſdem æquidiſtantibus conſtitutis.
Sit ergo parabola, FCH, circa axim, vel diametrum, CG, ad
quam ordinatim applicetur recta linea vtcunq; FH, ducantur dein-
de intra parabolam axi, vel diametro, CG, parallelæ vtcunque, A
N, MO, baſim, FH, in punctis, N, O, diuidentes. Dico igitur re-
ctam, AN, ad rectam, MO, eſſe vt rectangulum, FNH, ad re-
ctangulum, FOH; ducatur per, M, ipſi, FH, parallela, MI; eſt
ergo, GC, ad, CI, vt quadratum, GH, ad quadratum, IM, vel
ad quadratum, GO, ergo, perconuerſionem rationis, GC, ad, G
I, vel ad, MO, erit vt quadratum, H
G, ad ſuireliquum, dempto quadrato,
GO, hoc autem reſiduum eſt rectan-
gulum ſub, GOH, bis, vna cum qua-
drato, OH, quod eſt æqualerectan-
gulo, FOH, nam rectangulum, GO
H, cum quadrato, OH, æquatur re-
ctangulo, GHO, . i. rectangulo ſub,
FG, OH, cui ſi iunxeris rectangulum
ſub, GO, & eadem, OH, conſurget
integrum rectangulum, FOH, æqualerectangulis ſub, GOH, bis,
vna cum quadrato, OH, ergo, CG, ad, MO, erit vt quadratum,
GH, . i. vt rectangulum, FGH, ad rectangulum, FOH, & con-
uertendo, MO, ad, CG, erit vtrectang. HOF, ad rectangulum, H
GF; codem modo oſtendemus, CG, ad, AN, eſſe vt idem rectan-
gulum, HGF, ad rectangulum, FNH, ergo ex æquali, & conuer-
tendo, AN, ad, MO, erit vt rectangulum, FNH, ad rectangulum,
FOH, quod oſtendere oportebat. Poſſunt autem vocari & , AN,
MO, ordinatim applicatæ ad baſim parabolæ, FCH, ſcilicet ad
ipſam, FH.
408.1.
38. EtSch.
40. lib. 1.
4. 2. Elem.
3.2. Elem.
1. 2. Elem.
409.
THEOREMA IV. PROPOS. IV.
SI ad baſim parabolæ ordinatim applicetur vtcunque re-
cta linea, ſiat autem parallelogrammum, & triangulum
habentia circa communem angulum dictam applicatam, & abſciſſam à baſiab vtrauis extremitatum eiuſdem, vel ſint
duæ ad baſim vtcunque ordinatim applicatæ, ſub alterutra
quarum, & ſub in cluſa ab ijſdem portione baſis ſiat paralle-
logrammum, & triangulum; dicti parallelogrammi, vel trian-