# Full text: Cavalieri, Bonaventura: Geometria indivisibilibvs continvorvm

LIBER III. ſub, MX, & , MYT, in omnia quadrata, MYT, & in rectangula
lineo, MTXC, erunt vt, MX, ad, MYT, . i. vt, XY, ad, YZ,
miportionis, MYT, quater ſumpta æqualia omnibus quadratis por-
tionis, MST, & rectangula ſub, MYT, & quadrilineo, MTXC,
quater ſumpta æqualia rectangulis ſub eodem quadrilineo, & ſub
portione, SMT, bis ſumptis, nam portio, SMT, bis continet ſe-
miportionem, MYT, ergo conuertendo, omnia quadrata portio. nis, SMT, cum rectangulis bis ſub eadem, & quadrilineo, MTX
mis, HV, VC, ſunt
cum rectangulis bis
ſub, RV, VX, ergo
exęquali omnia qua-
drata portionis, SM
T, cum rectangulis
ſub parallelogrammis, HV, VC, erunt vt rectangulum ſub, XY, & quadrupla, YZ, ad quadratum, RV, cum rectangulis bis ſub, RV
X, vel vt eorum dim dia . ſ. vt rectangulum ſub, XY, & dupla, YZ,
cum rectangulo ſub, RV, VX, vel adhuc, vt horum dimidia (com-
pone autem rectangulum ſub, RV, VY, cumrectangulo ſub, RV,
VX, ex quibus fit rectangulum ſub, RV, YX,). ſ. vtrectangulum
ſub, ZY, YX, ad rectangulum ſub, RY, YX, . ſ. vt, ZY, ad, YR,
. ſ. vt ſemiportio, MYT, ad, MV, vel vt portio, SMT, ad, HV.

### 338.1.

C. 23. l. 2.
D.23. hu-
ius.

Inſuper omnia quadrata, HV, cum rectangulis bis ſub parallelo-
ſub parallelogrammis, RF, FX, funt vt, HR, ad, RD, & tan-
dem modo ſuperiori oſtendemus omnia quadrata, RF, cum rectan-