Full text: Cavalieri, Bonaventura: Geometria indivisibilibvs continvorvm

22. E.

E

REgula appellabitur in planis recta linea, cui quædam
lineæ ducuntur æquidiſtantes, & in ſolidis, planum,
cui quædam plana ducuntur æquidiſtantia, qualis in ſu-
perioribus eſt recta linea, vel planum, cuius reſpectu fu-
muntur vertices, vel oppoſita tangentia, cui vel vtraq; vel
alterum tangentium æquidiſtat.

23. SCHOLIVM.

_H_Aec minimè diſcrepant ab bis, quæ in Euclide, Archimede,
& Apollonio, circa vertices, baſes, altitudines, & tangen-
tia, ſiuelineas, ſine plana, aſſamuntur; cum, licet vniuerſalius, idem,
quod ipſi, declarent, vt ijs, qui in ſupra dictorum auctorum opert-
bus verſati ſunt innoteſcet facilè, vnde ſine ſcrupulo aſſumemus
aliquando ex dictis auctoribus, quæ ex conſimilibus difinitionibus
pendent, illis commiſcentes, prout opus fuerit, quæ ex bis dedu-
cuntur.

24. III.

EXpoſita quacumque figura plana, & in eiuſdem ambitu
ſumpto vt cumque puncto, ab eoque ad alteram eiuf-
dem partium ducta quadam recta linea terminata, & ſuper
planum propoſitæ figuræ eleuata, ſihæc per ambitum talis
figuræ ſemper æquidiſtanter cuidam rectæ lineæ moueri
intelligatur, donec omnem percurrerit ambitum, alterum
eiuſdem extremum punctum, quod non fertur per ambi-
tum propoſitæ figuræ, deſcribet circuitum planæ figuræ
ipſi propoſitæ æquidiſtantis, vt probabitur. Solidum er-
go, quod compræhenditur vtriſq. figuris iam dictis, & ſu-
perficie linea quæ reuoluitur, deſcripta, dicetur: Cylin-
dricus; ſuperficies in reuolutione deſcripta, nec non quod
libet illius fruſtum, ſuperficies cylindracea. Cylindrici
oppofitæ baſes dictæ figuræ planæ interſe æquidiſtantes; latus autem cylindrici, quæuis recta in ſuperficie cylindra-
cea oppoſitas baſes pertingens, cui congruit in reuolutio-

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer