rint æqualiter inclinatæ, ſi ſint per vertices ſimul adſcriptæ, inter ſe mutuò
congruant.
66.
VIII.
CONI-SECTIONIS VEL CIRCVLI PORTIO, SIVE SEGMENTVM
vocetur ſuperficies à quadam ſectionis ordinatim ducta, & curua ſectionis,
aut circuli peripheria terminata. Et ipſa ordinata dicatur
BASIS PORTIONIS, SIVE SEGMENTI.
67.
IX.
MENSALIS CONI-SECTIONIS, VEL CIRCVLI
dicatur differentia duorum ſegmétorum eiuſdem coni-
ſectionis, quorum baſes ſint parallelæ.
Vt ſi ex coni-ſectione, vel circulo ABC abſcindan-
tur duæ portiones ABC, DBE, quarum baſes AC, DE
ſint parallelæ, ipſarum portionum differentia ADEC di-
catur menſalis, & ipſæ AC, DE baſes, & AD, CE late-
ra eiuſdem menſalis.
68.
THEOR. XI. PROP. XIX.
Si fuerint duæ quæcunque coni-ſectiones æqualiter inclinatæ
per vertices ſimul adſcriptæ, ipſæ vel erunt in totum congruentes,
& eiuſdem nominis, vel in totum diſiunctæ, præter in vertice, hoc
eſt altera alteri inſcripta, vel in duobus tantùm punctis ſe mutuò ſe-
cabunt in ipſis tamen verticibus ſe contingentes.
SInt in præſenti ſchematiſmo duæ quæcunque coni-ſectiones ABC, DBE
æqualiter inclinatæ pereundem verticem B ſimul adſcriptę, quarum có-
munis diameter ſit BF: dico has ſectiones, vel eſſe in totum congruentes, vel
in totum diſiunctæ, vel in duobus tantùm punctis, ſe mutuò ſecantes.
68.1.
Schematif-
mus 1. & 2.
Ducatur ex vertice B cuilibet in altera ſectionum ordinatim applicatæ æ-
quidiſtans BGH, quæ vtranq; ſectionem continget ſuper qua ſumatur BH,
rectum latus ſectionis ABC, & BG rectum ſectionis DBE, ipſarumque regu-
læ, ſectionis videlicet ABC, ſit HPL, & ſectionis DBE ſit GOI.
Iam, vel regulæ GOI, HPL ſibi mutuò congruunt, vel infra contingen-
tem BGH nunquam conueniunt, vel infra eandem ſe mutuò ſecant. Si pri-
mùm, vt in primis 4. figuris; dico ſectiones in totum ſimul congruere, & eiuſ-
dem nominis eſſe.
Sumpto enim in ſectione ABC quolibet puncto M, per ipſum ducatur ſe-
ctionum communis ordinatim applicata MNFOP, ſectionem ſecans DBE in
N, diametrum in F, regulam GI in O, NL in P. Et quoniam in 4. primis fi-
guris, in quibus regulæ ſunt congruentes latitudines FO, FP ſunt æquales,
& altitudo eadem BF erit rectangulum BFO ſiue quadratum NF in ſectione
DBE, æquale rectangulo BFP ſiue quadrato MF in ſectione ABC, quare
& ſemi-applicatæ NF, MF æquales erunt, hoc eſt ſectiones DBE, ABC con-
ueniunt ſimul in punctis N, & M, quæ ſunt extrema communium applicata-