Full text: Viviani, Vincenzio: De maximis et minimis, geometrica divinatio

& diameter B G erit æquo maior: ſi igitur ipſa ad æquum reducatur in N,
ita vt, vel B N ſit æqualis ipſi E H, (dum ſolidum ſuerit Conoides Parabo-
licum,) vel ita vt B N, & E H ad proprias ſemi- diametros ſint in eadem ra-
tione,) dum ſolidum ſuerit Hyperbolicum, vel Sphæra, aut Sphæroides;) vel
ita vt eędem pertingant ad eandẽ ſimilem concentricam ſectionem inſcriptã; erit B N omnino minor B G, & ſi per N agatur ipſi A C ęquidiſtans O N P,
quę ad eandem diametrum B G erit ordinatim ducta, atq; minor ipſa A C,
ſiet portio, ſeu Canon O B P æqualis portioni, ſiue Canoni D E F, & ipſa O P ſecabit B L in R, eritque B R altitudo Canonis O B P, cum ob paral-
lelas ſit angulus B R N rectus: & ſi per rectam O P ducatur planum O Q P,
quod baſi A I C ſit parallelum, ſiue rectum ad Canonem A B C, id abſcin-
det ex dato ſolido portionem
O B P, cuius altitudo erit B
R eadem atque Canonis O B
P. Cumque Canon O B P
æqualis ſit Canoni D E F,
erit ſolida portio O B P æ- qualis ſolidæ portioni D E F,
ac ideo vt baſis O Q P ad ba-
ſim D K F, ita reciprocè al- titudo E M ad altitudinem B
R, eſtque baſis D K F ad ba-
ſim A I C, ex hypotheſi, vt
altitudo B L ad altitudinem
E M, quare, ex æquali in ratione perturbata, erit baſis O Q P ad baſim A
I C, vt altitudo B L ad altitudinem B R, ſed eſt B L maior B R, ergo & baſis O Q P maior erit baſi A I C, quod eſt falſum, cum ſit minor, eò quod
O P diameter Ellipſis, aut circuli O Q P minor ſit homologa diametro A C
ſimilis Ellipſis, vel circuli A I C. Non erit ergo Canonum A B C, D E F alter altero maior, quare inter ſe æquales eſſe neceſſe eſt: ideoque, & portiones ſolidæ A B C, D E F ęquales erunt. Quod ſecundò oſtendere propoſitum ſuit.

355.1.

78. h.
40. h. &
ex 45. h.
0308-01
78. h.
ex pri-
ma parte
huius.
Coroll.
15. Arch.
de Co-
noid. &c.
75. h.

356. THEOR. LVIII. PROP. LXXXVIII.

Æquales portiones ſolidæ de eodem quocunque Conoide, aut
Sphæra, aut Sphæroide ad ſibi inſcriptam Coni portionem, vel ad
circumſcriptum Cylindricum, vnam, eandemque ſimul habent
rationem.

ETenim huiuſmodi portiones habent baſes altitudinibus reciprocè pro-
portionales, vt in præcedenti, primo loco demonſtratum eſt, ſed ba-
ſes, & altitudines portionum eædem ſunt, ac baſes, & altitudines inſcripta-
rum Coniportionum, quare, & Coni portionum baſes ipſarum altitudini-
bus erunt reciprocè proportionales, ſed eædem portiones Conorum ſunt

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer