LIBER SEXTVS.
non differunt, cum Sol in Verticali circulo ponatur, atque adeo Verticalis circulus per centrum
Solis ductus idem ſit, qui Verticalis proprie dictus.
SED iam eaſdem ſex circunferentias inquiramus per triangula rectilinea, cum Sol in Aequa-
tore exiſtit. Repetatur ſigura cap. 2. in qua ducantur F Y, S V, ad B D, diametrum Horizontis, & F Z, T X, ad A C, diametrum Verticalis perpendiculares, iunganturq́ue rectæ k N, K O. Eſt au-
tem ex demonſtratis in cap. 3. circunferentia hectemoria H K, horaria B M, deſcenſiua A P, me-
ridiana B F, Verticalis A T, & horizontalis A S: quas omnes ex ſinubus inueniemus hac ratione.
476.1.
Inuentio earun
dem ſex circun-
ferentiarum per
ſinus, ex trian-
gulis rectilineis,
dum Sol in Ae-
quatore exiſtit.
PRO hectemoria ſumatur complementum diſtantiæ Solis à meridie, tribuendo ſingulis
horis grad. 15. & c. Eſt enim H K, complementum diſtantiæ Solis à meridie, nempe ipſius
arcus F K.
10
QVONIAM vero eſt in triangulis E F Z, E L O, vt E F, ſinus totus ad F Z, ſinum altitudi-
nis poli, ita E L, ſinus complemẽ
ti diſtantiæ Solis à meridie ad
L O, ſinum arcus A M, comple-
mẽti circunferẽtiæ horariæ B M: Si fiat, vt ſinus totus ad ſinum al-
titudinis poli, ita ſinus comple-
menti diſtantiæ Solis à meridie
ad aliud, producetur ſinus com-
plementi circunferentiæ hora-
riæ. Hoc ergo complementum,
vna cum circunferentia horaria,
non latebit.
476.1.
4. ſexti.
Horatia.
20
DEINDE quia in triangu-
lis E F Y, E L N, eſt vt E F, ſinus
totus ad F Y, ſinum complemen
ti altitudinis poli, ita E L, ſinus
complementi diſtantiæ Solis à
meridie ad L N, ſinũ arcus B P,
complementi circunferentiæ de-
ſcenſiuæ A P: Si fiat, vt ſinus to-
tus ad ſinum complementi alti-
tudinis poli, ita ſinus complement
ti diſtantiæ Solis à meridie ad
aliud, reperietur ſinus comple-
menti deſcenſiuæ circunferẽtiæ. Quocirca complementum hoc, vna cum circunferentia deſcenſiua, notum fiet.
476.1.
4. ſex@@.
30
Deſcen@@ua.
PRO circunferentia vero meridiana accipiendum eſt complementum altitudinis poli, vt ex
figura perſpicuum eſt, nempearcus B F.
RVRSVS, quia in triangulo K L N, latera K L, L N, æqualia ſunt lateribus R O, O E, trian-
guli R O E, (ſumpta enim eſt in cap. 2. recta O R, rectæ K L, æqualis: at O E, ipſi L N, æqualis
eſt, ob parallelogrammum N O,) angulosq́ue continent æquales, puta rectos, (Nam angulus
K L N, rectus eſt, ex deſin. 3. lib. 11. Eucl. propterea quòd, ſi ſemicirculus F K G, rectus ſtatuatur
ad Meridianum, recta K L, perpendicularis eſt, per defin. 4. lib. 11. Eucl. ad eundem Meridianũ,
cum ſit ad F G, communem ſectionem dicti ſemicirculi, & Meridiani perpendicularis) erunt ba-
ſes k N, E R, æquales. Sed K N, æqualis eſt ipſi M N, ſinui circunferentiæ horarię B M, quòd
tam K N, quàm M N, ſemidiameter ſit circuli æquidiſtantis Verticali, & per rectas K L, M N, du-
cti in ſphæra, vt patet, ſi ſemicirculus F K G, rectus ad Meridianum ponatur. Igitur erit quoque
E R, eidem M N, ſinui circunferentiæ horariæ æqualis. Quoniam vero in triangulis E R O,
E T X, eſt vt E R, ſinus horariæ circunferentiæ ad R O, hoc eſt, ad K L, illi æqualem, ſinum di-
ſtantiæ Solis à meridie, ita E T, ſinus totus ad T X, ſinum circunſerentiæ Verticalis A T: Si fiat,
vt ſinus circun ferentiæ horariæ, hoc eſt, ſinus complementi altitudinis Solis ſupra Verticalem
circulum, ad ſinum diſtantiæ Solis à meridie, ita ſinus totus ad aliud, inuenietur ſinus circunfe-
rentiæ Verticalis; ac proinde ipſa Verticalis circunferentia ignota non erit.
476.1.
40
34. primi.
4. primi.
50
4. ſexti.
Vertica@@@.
QVONIAM denique latera K L, L O, trianguli K L O, æqualia ſunt lateribus Q N, N E,
trianguli Q N E, (Recta namque Q N, rectæ K L, ſumpta eſt æqualis in cap. 2. at N E, ipſi L O,
ęqualis eſt, ob parallelogrammum N O,) continentq́ueæquales angulos, nempe rectos, (Eſt enim
K L O, rectus, ex deſin. 3. lib. 11. Eucl. eò quòd K L, ad Meridianum recta eſt, ex defin. 4. lib. 11. Eucl. vt ſupra etiam
[?]
dictum eſt) erunt baſes K O, E Q, inter ſe æquales. Eſt autem K O, ęqualis
ipſi O P, ſinui circunferentiæ deſcenſiuæ A P, cum tam K O, quàm O P, ſemidiameter ſit circuli
æquidiſtantis Horizonti, & per rectas k L, O P, ducti in ſphæra, vt patet, ſi ſemicirculus F K G,