Full text: Clavius, Christoph: Gnomonices libri octo, in quibus non solum horologiorum solariu[m], sed aliarum quo[quam] rerum, quae ex gnomonis umbra cognosci possunt, descriptiones geometricè demonstrantur

GNOMONICES pta eſt æqualis, ita E T, ſinus totus ad T X, ſinum Verticalis circunferentiæ A T: Si fiat, vt ſinus ho
rariæ circunferentiæ, hoc eſt, vt ſinus complementi altitudinis Solis ſupra Verticalem circulum,
ad ſinum cõplementi declinatio-
nis, ita ſinus totus ad aliud, inue-
nietur ſinus circunferentiæ Ver-
ticalis; ac propterea ipſa circũfe-
rentia Verticalis nota ſiet.

476.1.

4. ſexti.
Verticalis.
0564-01

POSTREMO, quoniam
in triangulis E Q N, E S V, eſt vt
E Q, ſinus circunferentiæ de-
ſcenſiuæ (Nam ſupra in horizon
tali circunferentia demonſtraui-
mus, rectam E Q, ipſi O P, ſinui
circunferentiæ deſcenſiuæ eſſe
æqualem) ad Q N, quæ ipſi k L,
hoc eſt, ipſi a m, ſinui | comple-
menti declinationis, ſumpta eſt
æqualis, ita E S, ſinus totus ad
S V, ſinum complementi circun
ferentiæ horizontalis A S; Si
fiat, vt ſinus @circunferentiæ de-
ſcenſiuæ, id eſt, vt ſinus comple-
menti altitudinis Solis ſupra Ho
rizontem, ad ſinum complemen
ti declinationis, ita ſinus totus
ad aliud, inuenietur ſinus com-
plementi horizontalis circunferentiæ; atque ob id complementum hoc, vnà cum circunferen-
tia horizontali, cognitum erit.

476.1.

4. ſex@@.
10
20
Horizontalis

EÆDEM circunferentiæ facilius adhuc reperiẽtur, Sole in Verticali circulo exiſtente. Tunc
enim perpendicularis k L, ca-
dit in punctum n, vbi paralleli
diameter diametrum Vertica-
lis interſecat, vt in tertia figura
cap 4. quam hic repetiuimus,
apparet, & obid rectæ E Q S,
E Y, M N, à recta A E, nõ dif-
ferent: Recta item O P, ipſi
k L, æqualis eſt, vt in cap. 4. demonſtrauimus, atque adeo
recta E R T, in punctum P, ca-
det: Item L f, E g, perpendicu
lares ad E Y, à rectis O P, E B,
perpendicularibus ad A E, non
diſcrepabunt.

476.1.

Quando Sol in
Verticali circu-
lo exiſtit, facili-
medictæ circu@
feren@@æ re@@@
[...] .
0564-02
30
40

ITAQVE quoniam eſt,
vt a m, quatenus ſinus totus in
parallelo dato, ad K L, quate-
nus ſinus rectus eſt diſtantiæ
Solis à meridie in eodem pa-
rallelo, ita a m, quatenus ſinus
eſt complementi declinationis
dati paralleli, nempe pars ſinus
totius in maximo circulo, puta in Meridiano, ad K L, quatenus pars eſt ſinus totius in eodem cir-
culo maximo, hoc eſt, ad O P, vel L f, ipſi K L, æqualem, quatenus ſinus eſt cõplementi circunfe-
rentiæ hectemoriæ f g, & ſinus rectus deſcenſiuæ circunferentiæ A P, & Verticalis A T: Si fiat, vt
ſinus totus ad ſinum diſtantiæ Solis à meridie, ita ſinus complementi declinationis ad aliud, inue-
nietur ſinus O P, arcus A P, cuius complementum fg, dabit circunferentiam hectemoriam, ip-
ſemet vero arcus A P, erit circunferentia deſcenſiua, & Verticalis.

476.1.

50
Hectemoria.
Deſcenſiua, &
Verticalis.

HORARIA autem circunferentia, & meridiana erit quadrans Meridiani B M, propterea
quòd, vt diximus, rectæ N M, E Y, à recta A E, non differunt.

476.1.

Horatia, & Me-
ridiana.

HORIZONTALIS denique circunferentia A S, nihil tunc eſt. Nam puncta A, & S,

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer