Full text: Gravesande, Willem Jacob: Physices elementa mathematica, experimentis confirmata, sive introductio ad philosophiam Newtonianam

PHYSICES ELEMENTA refractionis G np; id eſt, radii refracti magis divergentes
fiunt, & ad C accedit focus imaginarius f ; donec acceſſu puncti radiantis tandem hoc coincidat cum foco imaginario
in C; in hoc enim caſu radii nullam patiuntur refractionem .

497.1.

675.
TAB. VII.
fig. 3.
646.
629.

Si ulterius accedat punctum radians, inter C & O ma-
gis diſtet focus imaginarius ab O, quàm punctum radians, in-
ter hoc enim & C ſemper ille datur, propter angulos refra-
ctionis minores angulis incidentiæ .

497.1.

676.
624.

498. Experimentum . 7.

Si eadem dentur, quæ in experimento præcedenti, ad-
hibitâ tabellâ cum lente convexâ, de qua ſæpius jam di-
ctum, ad punctum radians formandum, facilia ſunt experi-
menta circa has propoſitiones.

Si radii fuerint convergentes, & punctum concurſus detur
in medio denſiori, in viciniis ſuperficiei media ſeparantis, re-
fracti radii etiam convergunt, ſed minus convergunt, quàm
incidentes.

498.1.

677.

Si ab O magis ac magis recedat focus imaginarius radio-
rum incidentium, id eſt, ſi hi minus convergant, etiam mi-
nus convergent radii refracti; donec, receſſu foci imagina-
rii, refracti paralleli ſint.

498.1.

678.

In ulteriori receſſu foci imaginarii divergentes fiunt refra-
cti radii.

498.1.

679.

499. Experimentum 8.

In hoc ad pixidem ita admovenda eſt tabella T, ut ra-
dii convergentes aquam intrent; & in motu tabellæ prædi-
cta ad oculum patent.

499.1.

TAB. VII.
fig 5.

Radii, qui e medio denſiori in rarius penetrant, manente
ſuperficie cavâ ad partem hujus medii, iiſdem fere legibus
ſubjiciuntur.

499.1.

680.

Radii paralleli refractione divergunt .

678. 626.

Si à puncto radianti procedant, magis ſunt divergentes .

681.
677.

Et cum acceſſu puncti radiantis continuo magis ac magïs
divergunt .

499.1.

682.
678.

Convergentes radii, qui ad centrum ſuperficiei ſphæricæ
tendunt, nullam ſubeunt mutationem .

499.1.

683.
629.

Si magis aut minus convergant, focus imaginarius inciden-

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer