Full text: Gravesande, Willem Jacob: Physices elementa mathematica, experimentis confirmata, sive introductio ad philosophiam Newtonianam

232. SCHOLIUM I.
Uberior demonſtratio n. 558.

Demonſtravimus in congreſſu corporum elaſticorum ſummam virium ante
& poſt ictum eſſe eandem ; unde ſequitur, poſitis explicatis in n. 565. 566. AB x BN q + BC x BE q = AB x BG q + BC x BP q ; cujus & hìc geometri-
cam dabimus demonſtrationem.

232.1.

TAB. XX .
fig. 12.
470.

Primo tendant corpora eandem partem verſus. Formentur quadrata li-
nearum BE, BG, BN, & BP; ducatur omnium diagonalis BV. Du-
catur IS parallela ad PV; & per S, punctum, in quo diagonalem ſecat,
ducatur XSK, parallela PB; continuentur GR & EQ in Z & K; quia
IN & IG ſunt æquales, ut & IP & IE, triangula YST, RSZ ſunt æ-
qualia, etiam triangula SXV, SKQ. Idcirca Trapezium GRTN æ-
quale eſt rectangulo GZYN, & trapezium EQVP æquale rectangulo
EKXP.

232.1.

587.
TAB. XX .
fig. 18.

Semidifferentia quadratorum linearum BN, BG eſt trapezium GRTN,
id eſt rectangulum GZYN. Eodem modo ſemidifterentia quadratorum linea-
rum BP, BE eſt rectangulum EKXP; Sed rectangula hæc, propter communem
altitudinem IS, ſunt ut baſes , aut ut baſium ſemiſſes IN, IE; etiam ut ſunt ſemidifferentiæ quadratorum ita integræ differentiæ: ergo

232.1.

1. El. VI.

BN q - BG q , BP q - BE q : :IN, IE, id eſt ut BC ad AB ex conſtructione. Idcirco AB x BN q - AB x BG q = BC x BP q - BC x BE q ; ideo AB x BN q
+ BC x BE q = AB x BG q + BC x BP q . quod demonſtrandum erat.

Tendant nunc corpora in partes contrarias. Formentur iterum quadrata
linearum BP, BN, BE aut B e, & BG aut B g. Propter æquales IN,
IG, & IP, IE, æquales ſunt NP, EG, aut e g; addamus utrim-
que e N, erunt æquales e P, g N. Differentia quadratorum BV & BQ,
id eſt quadratorum linearum BP, BE, eſt rectangulum, cujus baſis eſt PV,
& e Q, id eſt PE, & altitudo e P; differentia quadratorum BT, BR,
id eſt quadratorum linearum BN, B g aut BG, eſt rectangulum, cujus ba-
ſis eſt NT, & g R, id eſt NG, & altitudo g N; propter æquales alti-
tudines rectangula hæc ſunt ut baſes PE, NG, aut ut harum ſemiſſes IE,
IN, quæ ſuntut AB, BC; ergo
BP q - BE q , BN q - BG q : : AB, BC

232.1.

588.
TAB. XX .
fig. 29.

Idcirco AB x BN q - AB x BG q = BC x BP q - BC x B Eq ; unde
deducimus AB x BN q + BC x BE q = AB x BG q + BC x BP q . Quod
demonſtrandum erat.

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer