Full text: Archimedes: Archimedis De iis qvae vehvntvr in aqva libri dvo

SIT pyramis, cuius baſis triangulum a b c; axis d e: & ſecetur plano baſi æquidiſtante; quod ſectionẽ faciat f g h; occurratq; axi in puncto k. Dico f g h triangulum eſſe, ipſi
a b c ſimile; cuius grauitatis centrum eſt K. Quoniã enim
duo plana æquidiſtantia a b c, f g h ſecantur à plano a b d; communes eorum ſectiones a b, f g æquidiſtantes erunt: & eadem ratione æquidiſtantes ipſæ b c, g h: & c a, h f. Quòd
cum duæ lineæ f g, g h, duabus a b, b c æquidiſtent, nec
ſintin eodem plano; angulus ad g æqualis eſt angulo ad
b: & ſimiliter angulus ad h angulo ad c: angulusq; ad f ei,
qui ad a eſt æqualis. triangulum igitur f g h ſimile eſt tri-
angulo a b c. At uero punctum k centrum eſſe grauita-
tis trianguli f g h hoc modo oſtendemus. Ducantur pla-
na per axem, & per lineas d a, d b, d c: erunt communes ſe-
ctiones f K, a e æquidiſtantes: pariterq; k g, e b; & k h, e c: quare angulus k f h angulo e a c; & angulus k f g ipſi e a b
eſt æqualis. Eadem ratione
anguli ad g angulis ad b: & anguli ad h iis, qui ad c æ-
quales erunt. ergo puncta
e _K_ in triangulis a b c, f g h
ſimiliter ſunt poſita, per ſe-
xtam poſitionem Archime-
dis in libro de centro graui-
tatis planorum. Sed cum e
ſit centrum grauitatis trian
guli a b c, erit ex undecíma
propoſitione eiuſdem libri,
& K trianguli f g h grauita
tis centrum. id quod demonſtrare oportebat. Non aliter
in ceteris pyramidibus, quod propoſitum eſt demonſtra-
bitur.

74.1.

16. unde
cimi
10. undeci
mi.
16. unde-
cimi
10. unde-
cimi
0144-01
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer