Full text: Archimedes: Archimedis De iis qvae vehvntvr in aqva libri dvo

DE CENTRO GRAVIT. SOLID. metrum habens e d. Quoniam igitur circuli uel ellipſis
a e c b grauitatis centrum eſt in diametro b e, & portio-
nis a e c centrum in linea e d: reliquæ portionis, uidelicet
a b c centrum grauitatis in ipſa b d conſiſtat neceſſe eſt, ex
octaua propoſitione eiuſdem.

69. THEOREMA V. PROPOSITIO V.

SI priſma ſecetur plano oppoſitis planis æqui
diſtante, ſectio erit figura æqualis & ſimilis ei,
quæ eſt oppoſitorum planorum, centrum graui
tatis in axe habens.

Sit priſma, in quo plana oppoſita ſint triangula a b c,
d e f; axis g h: & ſecetur plano iam dictis planis æquidiſtã
te; quod faciat ſectionem K l m; & axi in pũcto n occurrat. Dico _k_ l m triangulum æquale eſſe, & ſimile triangulis a b c
d e f; atque eius grauitatis centrum eſſe punctum n. Quo-
niam enim plana a b c
K l m æquidiſtantia ſecã
tur a plano a e; rectæ li-
neæ a b, K l, quæ ſunt ip
ſorum cõmunes ſectio-
nes inter ſe ſe æquidi-
ſtant. Sed æquidiſtant
a d, b e; cum a e ſit para
lelogrammum, ex priſ-
matis diffinitione. ergo
& al parallelogrammũ
erit; & propterea linea
_k_l, ipſi a b æqualis. Si-
militer demonſtrabitur
l m æquidiſtans, & æqua
lis b c; & m K ipſi c a.

69.1.

0125-01
16. unde-
cimi.
34. prim@
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer