Full text: Archimedes: Archimedis De iis qvae vehvntvr in aqva libri dvo

DE CENTRO GRAVIT. SOLID. quo ſcilicet ln, om conueniunt. Poſtremo in figura
a p l q b r m s c t n u d x o y centrum grauitatis trian
guli pay, & trapezii ploy eſtin linea a z: trapeziorum
uero lqxo, q b d x centrum eſtin linea z k: & trapeziorũ
b r u d, r m n u in k φ: & denique trapezii m s t n; & triangu
li s c t in φ c. quare magnitudinis ex his compoſitæ centrū
in linea a c conſiſtit. Rurſus trianguli q b r, & trapezii q l
m r centrum eſt in linea b χ: trapeziorum l p s m, p a c s,
a y t c, y o n t in linea χ φ: trapeziiq; o x u n, & trianguli
x d u centrum in ψ d. totius ergo magnitudinis centrum
eſtin linea b d. ex quo ſequitur, centrum grauitatis figuræ
a p l q b r m s c t n u d x o y eſſe punctū _K_, lineis ſcilicet a c,
b d commune, quæ omnia demonſtrare oportebat.

65.1.

8. primi
0119-01
33. primit
28. primi.
0120-01
13. Archi
medis.
Vltima.

66. THE OREMA III. PROPOSITIO III.

Cuiuslibet portio-
nis circuli, & ellipſis,
quæ dimidia non ſit
maior, centrum graui
tatis in portionis dia-
metro conſiſtit.

66.1.

0121-01

HOC eodem prorſus
modo demonſtrabitur,
quo in libro de centro gra
uitatis planorum ab Ar-
chimede demonſtratũ eſt,
in portione cõtenta recta
linea, & rectanguli coni ſe
ctione grauitatis cẽtrum
eſſe in diametro portio-
nis. Etita demonſtrari po

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer