# Full text: Archimedes: Archimedis De iis qvae vehvntvr in aqva libri dvo

FED. COMMANDINI triangulum m k φ triangulo n k φ. ergo anguli l z k, o z k,
m φ k, n φ k æquales ſunt, ac recti. quòd cum etiam recti
ſint, qui ad k; æquidiſtabunt lineæ l o, m n axi b d. & ita. demonſtrabuntur l m, o n ipſi a c æquidiſtare. Rurſus ſi
iungantur a l, l b, b m, m c, c n, n d, d o, o a: & bifariam di
uidantur: à centro autem k ad diuiſiones ductæ lineæ pro-
trahantur uſque ad ſectionem in puncta p q r s t u x y: & po
ſtremo p y, q x, r u, s t, q r, p s, y t, x u coniungantur. Simili-
ter oſtendemus lineas
p y, q x, r u, s t axi b d æ-
quidiſtantes eſſe: & q r,
p s, y t, x u æquidiſtan-
tesipſi a c. Itaque dico
harum figurarum in el-
lipſi deſcriptarum cen-
trum grauitatis eſſe pũ-
ctum k, idem quod & el
lipſis centrum. quadri-
lateri enim a b c d cen-
trum eſt k, ex decima e-
iuſdem libri Archime-
dis, quippe cũ in eo om
nes diametri cõueniãt. Sed in figura alb m c n
d o, quoniam trianguli
alb centrum grauitatis
eſt in linea l e: trapezijq́; a b m o centrum in linea e k: trape
zij o m c d in k g: & trianguli c n d in ipſa g n: erit magnitu
dinis ex his omnibus conſtantis, uidelicet totius figuræ cen
trum grauitatis in linea l n: & o b eandem cauſſam in linea
o m. eſt enim trianguli a o d centrum in linea o h: trapezij
a l n d in h k: trapezij l b c n in k f: & trianguli b m c in fm. cum ergo figuræ a l b m c n d o centrum grauitatis ſit in li-
nea l n, & in linea o m; erit centrum ipſius punctum k, in

## Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer