Full text: Clavius, Christoph: Geometria practica

In triangulo rectangulo rectangulum ſub dif-
ferentia baſis, & alterutrius lateris circa rectum
angulum, & ſub ſumma baſis, & eiuſdem lateris,
æquale eſt quadrato alterius lateris circa angulum
rectum.

42.1.

Theorema.
080-01

Nam in triangulo rectangulo A B D, cui{us} angul{us}
D, rect{us}, ſiex B, per D, ſemicircul{us} deſcribatur E F D,
erit A E, differentia inter baſem A B, & lat{us} B D: At A F, ſumma erit baſis A B,
& eiuſdem lateris B D, cum B D, B E, B F, rectæ ſint æqual{es}. Dico igitur rectang ulum
ſub A E, A F, æquale eſſe quadrato lateris A D. Recta enim A D, cum perpendicu-
laris ſit ad ſemidiam{et}rum B D, ſemicirculum tang{et} in D. lgitur rectan- gulum ſub A E, A F, quadrato tangentis A D, æquale erit,
quod erat demonſtrandum.

42.1.

Coroll. 16.
ter.
36. ter.

43. FINIS LIBRI PRIMI.

080-02

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer