Full text: Clavius, Christoph: Geometria practica

Sit hexagonum datum A, æquilaterum quidem, ſed non æquiangulum, ita
vt B, ad latus quadrati illi æqualis inuentum maius non ſit ſemiſſe, dimidiati ambitus hexagoni. Sumpta ergo recta C D, æquali ſemiſsi ambitus hexagoni; erit B, recta non maior ſemiſſe ipſius C D, ſed vel æqualis, vel minor. Secta au- tem CD, in E, ita vt B, ſit media proportionalis inter ſegmenta DE, EC, fiatre-
ctangulum E G, contentum ſub ſegmentis D E, E C. Dico rectangulum E G,
æquale eſſe, & iſoperimetrum hexagono A. Quoniam enim tres D E, B, E C,
continuè proportionales ſunt; erit rectangulum E G, quadrato B, id eſt, he- xagono A, æquale. Et quia duo latera DE, EF, æqualia ſunt rectæ CD, hoc eſt,
ſemiſsi ambitus hexagoni A, ideo que reliquæ duæ FG, GD, alteri ſemiſsi: @erit
totum rectangulum E G, hexagono A, iſoperimetrum. Dato ergo rectilineo
parallelogrammum rectangulum ęquale, & iſo perimetrum conſtituimus: quod
erat faciendum.

318.1.

14. ſecundi.
ſchol. 13.
ſexti.
17. ſexti.

319. SCHOLIVM.

347-01

Qvod ſi B, latus quadrati foret maius ſemiſſe di-
midij ambitus rectilinei A, hoc eſt, maius recta CD,
non poſſet C D, ita ſecari, vt B, eſſet medio loco pro-
portionalis inter ſegmenta, vt liquidò conſtat.

Iam verò ſi ſumatur punctum H, inter C, & E,
vtcunque; erit rectangulum ſub D H, H C, adhuc
iſoperimetrum figuræ A, ſed tamen minus. Si verò ac-
cipiatur punctum I, vtcunque inter E, & L, punctum
medium rectæ C D; erit adhuc rectangulum ſub D I,
I C, figuræ A, iſoperimetrum, maius tamen. Sic et-
iam quadratum ſemiſsis D L, erit iſo perimetrum ei-
dem figuræ & maius; quæ omnia demonſtrabun-
tur, vt in ſcholio præcedentis problematis dictum
eſt.

320. APPENDIX.

De circulo per lineas quadrando.

1. Locvs hic me admonet, vt quoniam hoc libro demonſtratum eſt, cir-
culum figurarum omnium ſibi iſoperimetrarum eſſe maximum, breuiter do-
ceam, quaratione dato circulo quadratum conſtrui poſsit æquale, & viciſsim
dato quadrato circulus æqualis; atqueid per lineas: cum lib. 4. cap 7. copiosè
traditum ſit, quo pacto ex inuentis ab Archimede, per numeros circulus qua-
drandus ſit, hoc eſt, qua ratione area circuli, ſiue capacitas tum ex diametro, tum
ex circumferentia cognita ſit inuenienda: Huius enim areæ radix quadrata, la-
tus eſt quadrati, quod circulo æquale eſt. Sic è contrario cap. 8. eiuſdem lib. re-
gula 1. Num. 1. docuimus qua via ex data circuli area indaganda ſit tam circum-
ferentia, quam diameter illius circuli: hoc eſt, propoſito quadrato, inſtar areæ
circuli alicuius, quomodo circulus deſcribendus ſit illi quadrato æqualis. In-

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer