Full text: Clavius, Christoph: Geometria practica

LIBER QVINTVS. quinque triangula ABF, BCF, CDF, DEF, AEF, tot nimirum, quot in baſe ſunt
latera, dicitur pyramis.

205.1.

defin. 12.
vndec.

Convs autem eſt figura ſolida rotunda ad vnum punctum conſtituta, ſu-
pra baſem circularem, inſtar pyramidis rotundæ,
qualis eſt figura ABCDE.

205.1.

Area pyra-
midis, & co-
ni.
237-01

Tam autem pyramidis, quam Coni area pro-
ducitur ex multiplicatione baſis in tertiã partem
altitudinis. Cũ enim, vt in præcedenti cap. oſten-
dimus, ex baſe in totam altitudinem gignatur
priſma vel Cylindrus eandem habens cum pyra-
mide, & cono altitudinem; producetur ex eadem baſe in tertiam partem al- titudinis tertia pars illius priſmatis, vel Cylindri. , Cum ergo pyramisſit tertia pars illius priſmatis, & Conus tertia pars Cylindri, liquet tam pyramidẽ, quam Conum produci ex baſe in tertiam partem altitudinis. Ex quo fit, ſi baſis duca-
tur in totam altitudinem, tertiam partem numeri producti, eſſe quoque aream
pyramidis, vel Coni. Item eandem produci ex tota altitudine in tertiam par-
tem baſis: quod hac ratione tertia pars priſmatis, vel Conigignatur.

205.1.

ſchol. 14.
duodec.
Note:
corol. 7.
duodec.
10. duodec.
Areapyrami-
dis, & coni
aliter.

2. Basis porro pyramidis, ſi triangularis eſt, cognoſcetur, vt lib. 4. 2. tra-
ditum eſt: ſi multilatera, reperietur, per ea, quæ eodem lib. cap. 3. 4. & 5. ſcripſi-
mus. Baſis autem Coni inueſtigabitur ex cap. 7. eiuſdem lib. At verò altitudo
tam pyramidis, quam Coni, obtinebitur, ſi in vertice ſtatuatur planum baſi æ-
quidiſtans, ab eoque ad planum, in quo baſis, perpendicularis demittatur, ea-
que exquiſitè menſuretur. Quamuis enim eadem hæc altitudo inda [?] gari poſsit
Geo metrice, ſi inclinatio vnius lateris ad baſem, & magnitudo quoque eiuſdem
lateris cognoſcatur: quia tamen hęc ipſa exploranda ſunt materialiter per ali-
quodinſtrumentum, præſtatipſam quoque altitudinem ſtatim per inſtrumen-
tum exquirere, pręſertim per inſtrumentum partium, quod lib. 1. cap. 1. deſcri
pſimus: cum inuentio illa Geometrica difficilior ſit, procedatq; ex inclinatio-
ne, ac latere per inſtrumentum cognitis.

205.1.

1. ſchol. 7.
duodec. & 11.
duodec.
Altitudo py-
ramidis, &
coni.
Note:

3. Atqve hæc, quę diximus, intelligivolumus tam de pyramidibus, C@-
niſque rectis, quam de obliquis, & Scalenis.

206. DL AREA FRVSTI PYRA-
midis, & Coni.

Capvt III.

1. FRvstvm pyramidis, & Coni appello id, quod alij pyramidem decur-
tatam, & Conum decurtatum dicunt. Sit ergo fruſtum pyramidis
ABCDEF, cuius baſes ABC, DEF, ſint parallelæ, & ſimiles, & cuius
area inueſtiganda ſit. Quod duobus modis fieri poteſt. Primũ cogitetur integra
pyramis ABCH, cuius altitudinẽ HG, perpendicularem ad baſem (licet pyramis
actu nõ ſit integrata) ita inueniem 9 . Quoniã eſt, vt ab AB, ad AH, ita DE, ad DH, & permutando, vt AB, ad DE, ita AH, ad DH; erit quoq; diuidẽdo (ſumpta AS,

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer