Full text: Clavius, Christoph: Geometria practica

LIBER QVARTVS. Quo ſegmento 6. dempto ex latere B C, 21. remanebit alterum ſegmentum
C D, 15.

172.1.

18. primi.
13. ſecundi.
Note:
13. ſecundi.
Note:

Deinde in poſteriori triangulo ABD, ducenda ſit perpendicularis ad latus
A B, non maximum. Et quia latus DB, latere AD, maius eſt; erit angulus A, maior angulo B. Cum ambo ergo ſimul ſint duobus rectis minores, erit ſaltem minor B, acutus: ac proinde quadratum rectæ AD, minus erit quadratis recta- rum A B, B D, rectangulo bis comprehenſo ſub latere AB, & ſegmento inter B,
& perpendicularem. Siergo quadratum rectę AD, 121. ſubtrahatur ex ſumma
quadratorum rectarum AB, B D, id eſt, ex 544. reliquum fiet rectangulum bis
comprehenſum ſub A B, & ſegmento, inter B, & perpendicularem, nimirum
423. ideoque eius ſemiſsis 211 {1/2}. æqualis erit illi rectangulo ſemel ſumpto. Qua-
re ſi rectangulum hoc 211 {1/2}. diuidatur per latus AB, 12. dabit Quotiens 17 {5/8}. ſe-
gmentum inter B, & perpendicularem. quod quia maius eſt latere A B, argu-
mento eſt, perpendicularem DC, cadere extra triangulum: ac proinde angu-
lum A, obtuſum eſſe. Quod ſi ex hoc ſegmento 17 {5/8}. dematur latus AB, 12. re-
manebit exterius ſegmentum 5 {5/8}.

172.1.

18. primi.
17. primi.
13. primi.
Note:
Note:

Qvando conſtat, angulum A, eſſe obtuſum, ideoque perpendicularem
DC, extra triangulum cadere, reperiemus eadem ſegmenta BC, CA, hoc etiam
modo. Quoniam quadratum lateris BD, ſuperat quadrata laterum A B, AD, rectangulo bis comprehenſo ſub latere A B, & ſegmento exteriore AC; ſi ſum-
mam quadratorum rectarum AB, AD, 265. detrahatur ex quadrato lateris BD,
400. reliquum erit rectangulum 135. bis comprehenſum ſub AB, AC: & eius ſe-
miſsis 67 {1/2}. illi rectangulo ſemel ſumpto æqualis erit; ac proinde hocrectan-
gulo 67 {1/2}. diuiſo per latus A B, 12. indicabit Quotiens 5 {5/8}. ſegmentum exterius
CD; cui ſi addatur latus A B, 12. conflabitur ſegmentum BC, 17 {5/8}. Sed prior
ratio, quæ exlibr. 2. Euclid. non pendet, expeditior eſt, ac proinde tenenda: quamuis auctores alij poſteriorem hanc viam plerunque ſequantur.

172.1.

12. ſecundi.
Note:
Quæ ratio te-
nenda in ſe-
gmentis ex-
quirendis.
Perpendicu-
laris in trian-
gulo quo pa-
cto reperia-
tur.

Inventis ſegmentis à perpendiculari factis, ita magnitudinem perpendi-
cularis cognoſcemus.

DIFFERENTIA inter vtrumuis ſegmentum, & lat{us} adiacens ducatur in
ſummam ex eodem ſegmento & later@ conflatam. Radix enim quadrata nume-
ri producti perpendicularem exhibebit notam, vt lib. 1. cap. 3. Num. 17. demonſtra-
uim{us}.

Verbi gratia. In priori triangulo ABC, ſi differentia 4. inter ſegmentum B D,
& latus AB, hoc eſt, inter 6. & 10. multip licetur per 16. nempe per ſummam eiuſ-
dem ſegmenti BD, & lateris AB; gignetur numerus 64. cuius radix quadrata
8. dabit perpendicularem AD. Pari ratione ſi diſſerentia 2. inter ſegmentum
CD, & latus AC, hoc eſt, 15. & 17. ducaturin 32. id eſt, in ſummam eiuſdem ſeg-
menti CD, & lateris AC: procreabitur numerus 64. cuius radix quadrata 8. præbebit perpendicularem AD, vt prius.

172.1.

Note:

In poſteriori autem triangulo ABD, ſi differentia 5 {3/8}. inter
ſegmentum AC, & latus AD, nimirũ inter 5 {5/8}. & 11. ducatur
in 16 {5/8}. hoc eſt, in ſum̃am eiuſdem ſegmenti AC, & latus AD: producetur numerus {5719/64}. ſiue 89 {23/64}. cuius radix quadrata
in numeris exhiberi non poteſt, ſed paulo maior eſt, quãap-
poſita fractio cuius numerator eſt 75 {94/151}. denominator aũt 8.

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer