Full text: Clavius, Christoph: Christopheri Clavii Bambergensis ex Societate Iesv In Sphaeram Ioannis de Sacro Bosco commentarius

Ioan. de Sacro Boſco. lidum rectangulum contentum ſub ſemidiametro A D, & tertia parte ambit@
præfati corporis inſcripti intra ſphærã G H K, minus corpore inſcripto. Quo-
niã vero ambitus corporis inſcripti maior eſt ambitu ſphæræ A B C, ut demon
ſtrat Archimedes lib. 1. de ſphæra, & cylindro propoſ. 27. atque adeo & tertia
pars ambitus dicti corporis maior tertia parte ambitus ſphęræ A B C, erit ſo-
lidum rectangulum contentum ſub ſemidiametro A D, & tertia parte ambitus
ſphærę A B C, hoc eſt, ſolidum E, multo minus corpore inſcripto intra ſphærã
G H K: Poſita eſt autem ſphæra G H K, uel æqualis ſolido E, vel minor. Igitur
& ſphęra G H K, minor erit corpore intra ipſam deſcripto, totum parte, quod
eſt abſurdum. Quocirca ſolidum E, maius non erit ſphæra A B C.

91.1.

136-01
37. duod.

Sitdeinde , ſi fieri poteſt, ſolidum E, minus, quàm ſphæra A B C,
excedaturq́ue à ſphæra A B C, quantitate F. Intelligatur circa centrum D,
ſphæra deſcripta L M N, minor, quàm ſphæia A B C, ita tamen, ut exceſſus,
quo ſphæra L M N, ſuperatur à ſphæra A B C, non ſit maior quantitate F,
ſed uel æqualis, uel minor, hoc eſt, ut ſphæra L M N, ſit uel ęqualis ſolido
E, ſi nimirum ipſa excedatur a ſphæra A B C, quantitate F, vel maior ſolido
E, ſi uidelicet ſphæra L M N, a ſphæra A B C, ſuperetur minori quantitate,
quam F. Neceſſario enim aliqua ſphæra erit, quę uel æqualis ſit ſolido E, at-
que adeo minor, quàm ſphęra A B C; uel minor quidem, quàm ſphęra A B C,
maior uerò, quàm magnitu [?] do E, quæ minor ponitur, quàm ſphæra A B C. De-
ſcribatur deinde intra ſphæram A B C, corpus, quod minime tangat ſphęram
L M N; ita ut unaquæque perpendicularium ex centro D, ad baſes huius cor-
poris inſcripti cadentium minor ſit ſemidiametro A D. Si igitur à centro D,
ad omnes eius angulos lineæ extendantur, ut totum corpus in pyramides re-
ſoluatur, quarum baſes ſunt eędem, quæ corporis A B C, uertex autem com-
munis centrum D; erit quælibet pyramis æqualis (per 14. propoſ. huius) ſoli-
do rectangulo contento ſub eius perpendiculari, & tertia parte baſis, Et ideo
ſolidum rectan gulum contentum ſub ſemidiametro A D, & tertia baſis cuiuſ-
uis pyramidis, maius erit pyramide ipſa. Et quoniam omnia ſolida rectangu-
la contenta ſub ſingulis perpendicularibus ex centro D, ad baſes corporis di-
cti protractis, & ſingulis tertijs partibus baſium, ſimul ęqualia ſunt toti corpo-
ri, eſſiciunt autem omnes tertię partes baſium ſimul tertiam partem ambitus
corporis; erit ſolidum rectangulum contentum ſub ſemidiametro A D, & ter-
tia parte ambitus dicti corporis ſphærę A B C, inſcripti, maius corpore inſcri-
pto. Cum igitur ambitus ſphærę A B C, maior ſit ambitu corporis ſibi in ſcripti
atque adeo & tertia pars ambitus ſphæræ maior tertia parte ambitus dicti cor-
poris, erit ſolidum rectan gulum contentum ſub A D, ſemidiametro, & tertia
parte ambitus ſphærę A B C, hoc eſt, ſolidum E, multo maius corpore inſcri-
pto intra ſphæram A B C: Ponebatur autem ſphæra L M N, uel æqualis ſoli-
do E, uel maior. Igitur & ſphęra L M N, maior erit corpore intra ſphęram
A B C, deſcripto, pars toto, quod eſt abſurdum. Non igitur ſolidum E, minus
erit ſphęra A B C. Cum ergo neque maius ſit oſtenſum, ęquale omnino erit. Ac propterea area cuiuslibet ſphæræ æqualis eſt ſolido rectangulo compre-
henſo ſub ſemidiametro ſphæræ, & tertia parte ambitus ſphæræ, quod demon-
ſtrandum erat.

91.1.

17. duod.

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer