# Full text: Bithynius, Theodosius: Theodosii Tripolitae Sphaericorum libri tres

cunferentia A F B, in F, in partes inæquales, & ſit F B, minor. Ex F, demitta-
tur in planum circuli A C B D, perpendicularis F L, quæ ad partes ſegmenti
A D B, cadet, propterea quod ſegmentum A F B, ad ſegmentum A D C, eſt
inclinatum, ita vt punctum L, ſit vel intra ſegmentum A D B, vel extra, vel
certe in ipſa circunferentia A D B. Per centrum autem E, & punctum L, dia-
meter agatur C D, & ex F, in circunferentiam A C B, plurimæ rectæ cadant
F B, F G, & c. Dico omnium minimam eſſe F B; & F G, minorem quàm F H: omnium autem maximam eſſe F C: Item F A, eſſe omnium minimam, quæ ex
F, in circunferentiam A C, cadunt; & F I, minorem quàm F K. Ducantur ex
L, rectæ lineæ L B, L G, L H, L A, L I, L K, eruntque omnes anguli ad L,
quos facit perpendicularis F L, recti, ex defin. 3. lib. 11. Eucl.

Quoniam igitur recta L D, eſt omnium minima, (hæc autem linea nihil eſt om
nino in ea figura, vbi punctum L, cadit in D.) & L B, minor, quàm L G, L H,
L C, L K, L I, L A, & omnium maxima L C, & c. demonſtrabimus, vt in præ-
cedenti, rectam F B, eſſe omnium minimam, & F G, minorem quàm F H: Item
F C, omnium maximam, & F A, minimam omnium ex F, in circunferentiam
A C, cadentium; & F I, minorem quàm F K. Si igitur recta linea ſecans circu-
lum, & c. Quod erat oſtendendum.

7. vel 8. vel
15. tertil.
7. vel 8. vel
15. tertij. &
47. primi.

## 113.THEOREMA 3. PROPOS. 3.

SI in ſphæra duo circuli maximi ſe mutuo ſe-
cent, ab eorum verò vtroque æquales circunfe-
rentiæ ſumantur vtrinque à puncto, in quo ſe ſe-
cant: Rectæ lineæ, quæ extrema puncta circunfe-
rentiarum connectunt ad eaſdem partes, æquales
inter ſe ſunt.

IN ſphæra duo circuli maximi A B C, D B E, ſe mutuo ſecent in B, & in
vno quoque vtrinque à B, ſumantur duo arcus æquales B A, B C, & B D, B E,

## Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer