Full text: Bithynius, Theodosius: Theodosii Tripolitae Sphaericorum libri tres

lum _B D,_ ponitur ſecare ad angulos rectos, erit ex defin. 4. lib. 11. Eucl. _E A,_ ad pla
num circuli _B D,_ recta; ac proinde cum ex E, centro ipſius educatur, in vtrunque
polum eiuſdem cadet. Cadit autem in circunferentiam circuli _A B C D,_ in ſuperficie
ſphæræ exiſtem ad puncta _A, C._ Sunt ergo _A, C,_ poli circuli _BD;_ at que adeo cir
culus _A B C D,_ circulũ _B D,_ per polos _A, C,_ ſecat. Quare ex præcedenti theoremate,
maximus circulus eſt. Probatum autem eſt, quod & circulum _B D,_ per polos ſecat. Conſtat ergo propoſitum.

51.1.

032-03
Schol. 8.
huius.

52. IIII.

SI in ſphæra ſit circulus, & ab altero polorum eius recta cadens
in planum ipſius ad angulos rectos æqualis ſit ſemidiametro eius,
circulus maximus eſt.

52.1.

24.

_IN_ſphæra ſit circulus _AB_, à cuius altero polorum _C,_ in planum eius cadens re
eta perpendicularis _C D,_ æqualis ſit ipſius ſemidiametro. _Dico A B,_ eſſe circulum ma
ximum. Cum enim _C D,_ perpendicularis ſit ad circulum _A B,_ cadet ipſa in circuli
centrum, & producta cadet in alterum polum, qui ſit E. Eſt ergo _D,_ centrum circu
li _AB;_ atque adeo perpendicularis _C D,_ tran-
ſit per centrum ſphæræ. Ducatur per rectã _C E,_
in ſphæra planum vtcunque faciens in ſphæra
circulum _A E B C,_ qui cum tranſeat per centrũ,
ſphæræ, maximus erit: qui circulum _A B,_ ſecet
in punctis _A, B,_ & iungatur ſemidiameter _D B,_
cui ex hypotheſi æqualis eſt _G D._ Quoniam vero
_C D,_ perpendicularis ponitur ad circulum A B,
erit, ex deſin. 3. lib. 11. Eucl. angulus _C D B,_ re-
ctus. Quare _B D,_ media proportionalis eſt inter
_C D, D E,_ hoc eſt, erit, vt _C D,_ ad _B D,_ ita _B D,_
ad _D E._ Eſt autem _C D,_ ipſi _B D,_ æqualis. Igi-
tur & _D E,_ eidem _B D,_ æqualis erit; atq; adeo
& _C D, D E,_ inter ſe æquales erunt. Cum ergo _C E,_ oſtenſa ſit tranſire per centrũ
ſphæræ, erit _D,_ centrum ſphæræ. Erat autem & centraum circuli _A B._ Idem ergo
eſt centrum ſphæræ. & circuli _A B,_ ac proinde circulus _A B,_ maximus eſt. Quod eſt
propoſitum.

52.1.

033-01
9. huius.
Coroll. 2.
huius.
1. huius.
Schol. 13.
fextf.
6. huius.

53. THEOREMA 15. PROPOS. 16.

25.

SI in ſphæra ſit maximus circulus, recta linea
ducta ab eiuſdem circuli polo ad circunferentiã
æqualis eſt lateri quadrati inſcripti in maximo cir-
culo.

IN ſphæra ſit circulus maximus A B, à cuius polo C, ad eius circũferentiã
ducatur recta C B. Dico C B, æqualẽ eſſe lateri quadrati in circulo A B, vel

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer