SEDijdem errores proueniunt exſummis partium ſimplicium.
Vtexempli gratia, in figura
.B.
ſumma propoſita partium ſimplicium eſt .39.
vt diximus, eo quòd ab ipſo .50. detraxerimus .11. ſumma ſcilicet numerorum adij
ciendorum ad efficiendas partes compofitas, ſumma poſteà fimplicium partium
primæ poſitionis, erit .60. eo quòd prima pars erat .10. ſecunda autem ſimplex 20.
tertia verò fimplex .30. iuxta ordinem propoſiti. Summa deinde ſimplicium
partium
partiũ
fecundæ poſitionis effet .48. quia prima eius pars erat .8. ſecunda verò ſimplex .16.
tertia autem ſimplex .24. vnde prima ſumma excederet datam .39. per .21. differen-
tiæ, ſecunda verò per .9. vt ſupra vidimus de ſummis compoſitis à dato .50. compo-
fito, & hoc quidem mirandum non eft, quod ſcilicet tres ſummæ fimplicium par-
tium ſintinuicem inæqua-
les, ijſdem differentijs me-
diantibus, quibus
differunt
differũt
dictæ tres ſummæ compofi
tæ, cum ab vnaquaque
con
cõ
poſitarum
poſitarũ ablatus fit nume-
rus .11. æqualiter, vnde ex
neceſſitate, permutando,
earum
earũ differentiæ
relinquem
relinquẽ
dæ erant æquales inuicem
ex
.78. theoremate hu-
ius noſtri lib.
ſummæ enim
compofitæ erant .71. 59. et
50. fimplices verò .60. 48.
et .39. differentes à primis
per .11. vt dictum eft, qua
re veritas ita manabit à compofitis, quemadmodum à fimplicibus, ſed à fimplici-
bus per ſe, & a compofitis per accidens vtiam iam videbimus.
ANtiquorumigitur primus m odus vtitur regula detribus, hocordine, multi-
plicando ſcilicet ſecundum errorem, qui eft .9. cum differentia primarum par
tium pofitarum, quæ eft .2. & productum diuidendo per differentiam errorum, quæ
eft .12. proueniens poftea quod eft .1. cum dimidio additur hoc loco primæ parti ſe-
cundæ poſitionis.
&c.
&c. quòd benè ſe habet. Vbi animaduertendum eſt, quod ille
numerus .12. non eft accipiendus per ſe vt differentia errorum hoc eft .21. et .9. nifi
peràccidens, fed benè perfe, vt
differentia
differẽtia inter .60. er .48. ſimplices ſummas, quem
admodum .9. in hoc propoſito eft differentia per ſe inter .48. et .39 per accidens ve-
ro inter .59. et .50.
Cognoſcendum igitur eft mediante .24. quinti Eucli. quod eadem proportio
eft primæ ſummæ (ſimplicium dico) ad ſuam primam partem, quæ ſecundæ ſum-
mæ ad ſuam, & tertiæ ſummæ ad fuam fimiliter (vbi rectè etiam feciffent hoc in lo-
co antiqui ſi multiplicauiffent tertiam ſummam fim plicem cum prima parte prioris
fummæ fimplicis, & productum diuififfent per primam ſummam, vnde prima pars
quæſita tertiæ ſummæ orta fuiffet, abſque ullo negotio ipfius plus velminus) Quare
habebimus tres terminos antecedentes ab vna parte, & tres terminos conſequen-
tesab alia parte continentes vnam
eandemque
eandemq́; proportionem, vnde ex .19. quinti,
vel .12. ſeptimi eorum differentiæ proportionales erunt, hoc eft,
quod
ꝙ eadem propor
THEOREM. ARIT.
tio erit eius differentiæ, quæ eſt inter primam & fecundam ſummam, ad differen-
tiam quæ eſt inter primas earum partes, quæ illius differentiæ, quæ eſt inter ſecun-
dam & tertiam ſummam, ad differentiam, quæ eft inter primas illarum partes, ſed
harum .4. differentiarum, tres nobis cognitæ ſunt, ideft .12. 2. et .9. ergo ex regula de
tribus ab Eucli. in .20. ſeptì
[?]
mi ſpeculata inueniebatur quarta differentia, quæ eft .1.
cum dimidio.
A compofitis ſummis idem etiam proueniet, ſed non vt ex proprijs caufis, & per
ſe, ſedper accidens. Nam quamuis eadem differentia fit inter 71. et .59. quæ in-
ter .60. et .48. &
eadem
eadẽ inter .59. et .50. quæ inter .48. et .39. Nihilominus non eft
eadem
eadẽ
proportio (propriè) ipſius .71. ad .59. quæ ipſius .60. ad .48. nec ea quæ ipſius .59. ad .
50. eft quæ ipſius .48. ad .39: Vnde non erit eadem proportio ipſius .71. ad .59. quæ
ipfius .10. ad .8. ne@ea quæ eft ipfius .59. ad .50. quæ ipſius .8. ad .6. cum dimidio. Sed
minores illis. Nam ex æqualibus additamentis diminuuntur proportiones maio-
ris inęqualitatis.
A fimplicibus igitur ſummis pendet ratio huiuſmodi effectus.
Si vero prima pars fecundæ poſitionis effet .4. tunc ſecunda eius pars effet .8. & ter-
tia .12. quarum ſumma effet .24. (harum fimplicium partium ſeilicet) & minor vera
(39.) per .15. & differens à ſumma primarum. (60.) per .36. & differentia primarum
partium effet .6. differentia vero primæpartis ſecundæ poſitionis, a prima parte quę
fita effet .2. cum dimidio. Vnde in huiuſmodi exemplo videre eft quare colligan-
tur errores inuicem, quando alter eorum eccedit, reliquus vero deficit à numero pro
pofito. Quod quidem ob aliam caufam non fit, nifi vt cognoſcatur differentia .36.
differentia ſcilicet ſimplicium ſummarum ipſarum poſitionum.
Secundus autem modus ab antiquis magis exercitatus eſt, quod multiplicabant
diametraliter errores cum primis partibus, hoc eſt primum errorem cum prima par
te, hoc eſt cum numero ſecundæ poſitionis, ſecundum vero errorem cum prima
parte, hoc eſt cum numero primæ poſitionis, differentiam poſteà vel aggregatum
horum duorum productorum diuidebant per differentiam vel aggregatum dicto-
rum errorum, proueniens poſteà erat prima pars quæſita numeri propoſiti. Vn-
de oriebantur tria producta, quorum
tertium
tertiũ, hoc eſt differentia, ſeu aggregatum il-
lorum conſtituebatur ex differentia feuaggregato errorum, & ex numero quæ-
fito.
Vtin præfenti exemplo, primus error eſt .21. qui multiplicatus cum prima par-
te ſecundæ poſitionis, quæ eſt .8. producit .168.
ſecundus
ſecũdus verò error eſt .9. qui multi-
plicatus cum prima parte primę poſitionis producit .90. differentia autem horum
productorum eſt .78. quæ diuifa per differentiam errorum, quæ eſt 12. dabit .6.
cum
cũ di
midio, pro prima parte quæſita dati numeri diuiſibilis, qui erat .50.
Hæc omnia rectè ſe habent. Sed, vt ſupra dixi diuiſor non eft per ſe differentia
errorum, neque etiam differentia per ſe ſummarum compoſitarum, fed bene fim-
plicium.
Pro cuius rei ſpeculatione, accipiendæ ſunt ſummæ ſimplices, quarum differen-
tiæ per ſe vtiles ſunt in huiuſmodi operatione; & quia etiam rationes veritatis ex
iſtis, & non ex illis fluunt; quamuis tam vnæ, quam aliæ ſint eædem in quantitate,
ideſt æquales.