Full text: Volumen secundum. Opera geometrica. Opera astronomica. Varia de optica. (2)

191. II.
CONSTRUCTIO PROBLEMATIS OPTICI.
Propoſitio 39 Libri v. Alhazeni, & 22 lib. VI .
Vitellionis.

Puncta B, C, & circulus E K, cujus centrum eſt A,
data ſunt in eodem plano; inveniendum eſt pun-
ctum K in peripheria circuli, ita ut lineæ B K, C K
faciant cum linea A K angulos inter ſe æquales.

191.1.

TAB. LVI.
fig. 1.

DUctis A B, A C; fiat A C, A F: : A F, A Q; & A B,
A E: : A E, A P: ſint etiam A P, & A Q, bifariam di-
viſæ in R & S; in angulo B A C ſint perſecta parallelo-
gramma P A Q H & A R Z S. In R Z producta ſumantur
Z Y & Z X, utraque æqualis lineæ quæ poteſt differentiam
inter quadrata Q S & Z S: fiat X V æqualis X Y & paral-
lela A B; & lateribus X V & X Y deſcribatur hyperbola,
quæ tranſibit per puncta Q & H, uti patet per conſtructio-
nem; hyperbola hæc Q X H occurret circulo in puncto K,
quod quæritur.

Ductis K O & KI parallelis A C & A B, quarum K I
occurrit Y X in puncto D. Ob hyperbolam rectangulum
Y D X æquale eſt quadrato K D ordinatæ, vel quadrato O R; & rectangulum Y T X æquale eſt quadrato H T, vel quadra-
to P R; & demto a rectangulo Y T X, rectangulum Y D X
& a quadrato P R, quadratum O R, ſupererit rectangu-
lum R D T vel A I Q, quod æquale erit rectangulo A O P. P O ergo eſt ad A I, vel O K ipſi æqualem, ut Q I ad
A O, vel I K; & ductis lineis K P, K Q triangula K O P,
K I Q erunt ſimilia & ideo æquiangula; idcirco anguli
A P K, A Q K, qui iidem ſunt, vel ſupplementa angulorum
æqualium O P K, I Q K erunt inter ſe æquales; ſed per con-
ſtructionem A B, A E vel A K, : : A K vel A E, A P; ideo duo triangula B A K, K A P ſunt ſimilia, & ob ean-
dem cauſam duo triangula C A K, K A Q, ſunt etiam ſi-
milia; ideo angulus B K A eſt æqualis angulo A P K, &

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer