Full text: Volumen secundum. Opera geometrica. Opera astronomica. Varia de optica. (2)

VERA CIRCULI C, G; & ideo terminatio ſeriei A, C, E, nempe Z, major
erit terminatione ſeriei A, C, G, nempè X; at ex Archime-
dis quadratura parabolæ conſtat X æqualem eſſe ipſi C dem-
pto triente exceſſus A ſupra C, & proinde Z eadem major
eſt, quod demonſtrare oportuit.

93.1.

A B # A
C D # C
E F # G
K L # H
Z # X

94. PROP. XXIV. THEOREMA.

IIsdem poſitis; dico Z ſeu ſe-
ctorem hyperbolæ minorem eſ-
ſe quam minor duarum mediarum
arithmeticè continuè proportio-
nalium inter A & B. Inter A & B ſit media arithmetica G, & in-
ter G & B ſit media Arithmetica
H, Item inter G & H ſit media Arithmetica M, & inter M
& H ſit media Arithmetica N: continueturque hæc ſeries con-
vergens A B, G H, M N, O P, in infinitum, ut fiat ejus termi-
natio X. ſatis patet ex prædictis G majorem eſſe quam C; atque H media arithmetica inter G & B major eſt media har-
monica inter easdem G & B; media autem harmonica inter
G & B; major eſt media harmonica inter C & B, nempe D, quo-
niam G major eſt quam C; & ideo media Arithmetica inter G
& B nempe H major eſt quam D media harmonica inter C & B
eodem modo M media Arithmetica inter G & H major eſt me-
dia geometrica inter eaſdem G & H; & quoniam G eſt ma-
jor quam C & H quam D, media geometrica inter G & H
major eſt quam E media geometrica inter C & D; & proin-
de M major eſt quam E. Deinde N media Arithmetica in-
ter M & H major eſt media harmonica inter easdem; & quo-
niam H major eſt quam D & M quam E, media harmonica
inter M & H major eſt quam F media harmonica inter E & D; & ideo N eadem F major eſt. eodem modo utramque
ſeriem in infinitum continuando, ſemper demonſtratur ter-
minum quemlibet ſeriei A B, C D, minorem eſſe quam idem
numero terminum ſeriei A B, G H; & igitur terminatio ſe-
riei A B, C D, nempe Z, minor erit terminatione ſeriei A B,

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer