Full text: Volumen primum. Opera mechanica (1)

195. IX.
Chriſtiani Hugenii, Solutio Problematis de
linea in quam flexile ſe pondere pro-
prio curvat.

Si Catena C V A ſuſpenſa ſit ex filis F C, E A utrin-
que annexis, ac gravitate carentibus, itaut capita C & A
ſint pari altitudine, deturque Angulus inclinationis filorum
productorum C G A, & catenæ totius poſitus, cujus vertex
ſit V, axis V B.

195.1.

TAB.XXXIII.
Fig. 5.

1. Licebit hinc invenire tangentem in dato quovis catenæ
puncto. Velut ſi punctum datum ſit L, unde ducta appli-
cata L H dividat æqualiter axem B V. Jam ſi angulus C G A
ſit 60°, erit inclinanda a puncto A ad axem recta A W, æ-
qualis {1/2} A B, cui ducta parallela L R, tanget curvam in pun-
cto L. Item ſi latera G B, B A, A G ſint partium 3, 4, 5,
erit A W ponenda partium 4 {1/2}.

2. Invenitur porrò & recta linea catenæ æqualis, vel da-
tæ cuilibet ejus portioni. Semper enim dato angulo C G A,
data erit ratio axis B V ad curvam V A. Velut ſi latera
G B, B A, A G ſint ut 3, 4, 5, erit curva V A tripla
axis V B.

3. Item definitur radius curvitatis in vertice V, hoc eſt,
ſemidiameter circuli maximi, qui per verticem hunc deſcri-
ptus totus intra curvam cadat. Nam ſi angulus C G A ſit 60°,
erit radius curvitatis ipſi axi B V æqualis. Sin vero angulus
C G A ſit rectus, erit radius curvitatis æqualis curvæ V A.

4. Poterit & circulus æqualis inveniri ſuperficiei conoidis,
ex revolutione catenæ circa axem ſuum. Ita ſi angulus C G A
ſit 60°, erit ſuperficies conoidis ex catena C V A genita æ-
qualis circulo, cujus radius poſſit duplum rectangulum
B V G.

5. Inveniuntur etiam puncta quotlibet curvæ K N, cujus
evolutione, una cum recta K V, radio curvitatis in verti-

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer