Full text: Angeli, Stefano: Miscellaneum Hyperbolicum et Parabolicum

vna cum tripla B D, ad duplam G B, cum B D. Et ſubquadruplando terminos, erit B P, ad P D,
vt G B, cumſubſeſquitertia B D, ad dimidiam G B,
cum quarta parte B D.

28.1.

0048-01

29. PROPOSITIO XIV.

Centrum grauitatis conoidis hyperbolici ſic diuidit quartam
partem diametri eiuſdem ordine ſecundam à baſi, vt
pars propinquior baſi ſit adreliquam, vt ſexta pars la-
teris tranſuerſi, ad tertiam partem compoſitæ ex latere
tranſuerſo, & ex diametro.

SEd in ſchem. anteced. ſupponat prudens geome-
tra diametrum B D, ſecari bifariam in L, & L D, bifariam in Q; deinde L Q, ſic ſecari in P,
vt Q P, ſit ad P L, vt ſexta pars G B, ad tertiam
partem G D. Dico P, eſſe centrum grauitatis
conoidis A B C. Cum enim Q, ſit centrum graui-
tatis coni A B C, & ex ſchol. propoſit. 6. L, ſit
centrum exceſſus conoidis ſupra conum; & cum ſit
Q P, ad P L, vt ſexta pars G B, ad tertiam par-
tem G D, nempe exhypotheſi, vt ſexta pars qua-
drati D E, ad tertiam partem quadrati A D; nem-
pe ex ſchol. cit. vt exceſſus conoidis ſupra conum ad
ipſum conum. Ergo ex Archimede in æqueponde-
rantibus, erit P, centrum grauitatis totius co-
noidis.

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer