Full text: Angeli, Stefano: Miscellaneum Hyperbolicum et Parabolicum


Si fiat vt ſemihyperbola ad dimidium parallelogrammi ſibi
circumſcripti, ſic compoſita ex ſemilatere tranſuerſo hy-
perbolæ, & ex tertia parte axis eiuſdem, ad aliam: dein-
de fiat vt compoſita ex latere tranſuerſo & ex axi, ad
inuentam, ſic baſis ſemihyperbolæ ad ſui partem abſcin-
dendam incipiendo ab axi. Centrum grauitatis ſemihy-
perbolæ erit in line a per punctum ducta axi parallela.

ESto hyperbola A B C, cuius axis B E; centrum
G; latus tranſuerſum F B; parallelogrammum
ei circumſcriptum ſit D C; ſitque B H, tertia pars
B E; & fiat vt A B E, ad dimidium D E, ſic G H,
ad E k; & pariter fiat vt F E, ad E k, ſic A E, ad
E L; ac per L, ducatur L M, parallela B E. Dico
in M L, eſſe centrum grauitatis ſemihyperbolæ
A B E. Intelligamus D E, cum ſemihyperbola. A B E, rotari circa B E. Quoniam ex propoſit. 5. 7. & 11. cylindrus D C, eſt ad conoides A B C, vt
F E, ad G H; & ratio F E, ad GH (de foris ſumpta
E k) componitur ex rationibus F E, ad E k, & hu-
ius ad G H. Ergo etiam ratio cylindri ad conoides
componetur ex ijſdem rationibus. Sed ex ſchol. 1. propoſit. 3. lib. 3. ratio cylindri ad conoides compo-
nitur etiam ex ratione dimidij D E, ad A B E, & ex
ratione A E, ad interceptam inter E B, & centrum
æquilibrij A B E, ſeù grauitatis duplicatæ A B E,


Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer