Full text: Barrow, Isaac: Lectiones Opticæ & Geometricæ

jam aliquoties inſinuatâ; ſcilicet ut ſit AB. YB : : √ Iq -Rq. I; & deſignetur quilibet refractus KN; tum continuetur ratio YB ad
BN; ut ſit ad has proportione quarta BP; & per punctum P du-
catur recta PZ ad AB parallela; refracto KN occurrens in Z; dico
nullum alium refractum per Z traſire. Nam ſi ſieri poteſt tranſeat
alius ZR; & per Y traducantur rectæ NYG, RYS ; è præmon-
ſtratis apparet quòd ſit RS = NG. item è prædictis manifeſtum eſt quò RS & gt; N G. quæ repugnant.

14.1.

Fig. 57, 58.
12. Lect. 4.
9 hujus Lect.

XVI. Non diſpari ratione, quoad caſum ſecundum, deſignetur quilibet
refractus KN; & fiat KB . GB : : √ Rq - Iq. R; tum adnexâ
GN, ad ipſas NG, GB ſumatur tertia proportionalis V; & ſiat
NG. V : : BN. NP; & per punctum P ducatur PY ad BA pa-
rallela refractum NK decuſſans in Z; dico nullum alium refractum
per ipſum Z meare. Nam, ſi neges, tranſeat alius ZR; & per
Y trajiciatur RY S; & quoniam ZP . YP : : KB. GB : : √ Rq
- Iq. R. ex * antedictis apparet fore RS = NG. quinetiam ob
NGq . GBq : : NG. V : : BN . NP . erit dividendo NBq. GBq : : BP . NP . hoc eſt NPq. PYq : : BP . NP; inde facile
deducitur eſſe BP quartam proportionalem in ratione YP ad PN ; conſequentérque fore RS minimâ NG majorem . quod adver-
ſatur oſtenſis . itaque potiùs per Z nullus alius tranſit reſractus: Q. E. D.

14.1.

* 14. Lect.4.

XV I. Prætereà, ſi refractum NKZ interſecet alius quilibet M I,
ad rectiorem pertinens incidentem (hoc eſt ut incidentiæ punctum M
inter B, & N jaceat) interſectio X ſolitario puncto Z citerior erit
(ſeu perpendiculari KB propinquior) . Nam ab X demittatur per-
pendicularis XQ. ipſam NG ſecans in γ ; & (in primo caſu) per
M, Y traducatur recta MY H. ergò MH = Nγ. quare minima earum
quæ per Y angulo XQF interſeri poſſuntinter puncta M, N cadet
(utì nuper admonitum, & adſtructum). puta ad φ. ergò quum ſit
BP quarta proportionalis in ratione YB ad BN ; & BQ quarta
proportionalis in ratione YB ad B φ, erit PB & gt; QB; adeóque
recta XQ rectis ZP, KB interjacet : Q. E . D.

14.1.

Fig. 59, 60.

In ſecundo caſu, per γ trajiciatur recta M γ H. ergò cùm ſit
Q X. Q γ : : PZ. PY : : √ Rq - Iq. R. erit HM = GN. ergò
minima per γ ducibilium angulo AB F intercipienda punctis M, N
intercider; puta ad φ. quare QB quarta proportionalis erit in ratione
γ Qad Q φ; & eſt γ Q. Qφ & gt; (γ Q. QN.) : : YP. PN . &

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer