Full text: Barrow, Isaac: Lectiones Opticæ & Geometricæ

{_cc_/3}, ac ordinetur PV ad curvam AMH, erit PV maxima; item ſi
AQ = {3/8}_b_ + √{9/64}_bb_ + {_cc_/2}, & ordinetur QX ad curvam ANH
erit QX maxima.

3. Hinc, ſi in ſecundo harum gradu ſit _n_& gt; √ _cc_ + {_bb_/4}; in ter-
tio ſi (poſito fore f = {_b_/3} + √{_bb_/9} + {_cc_/3}) ſit _n_ 3 & gt; _ccf_ + _bff_
- _f_ 3 ; in quarto, ſi (poſito fore _g_ = {3/8}_b_ + √{9/64}_bb_ + {_cc_/2}) ſit _n_ 4
& gt; _ccgg_ + _bg_ 3 - _g_ 4 ; nulla datur radix; nam his ſupp ſitis,
recta EF curvis non occurret, reſpectivè.

4. Si fuerit Aφ = {_b_/4} + √{_bb_/16} + {_cc_/2}, & ordinetur φ Y; erit Y
_Nodus_ curvarum; unde ſi _n_ = Aφ; erit Aφ una radicum in omni-
bus.

5. Curva CLH, eſt _circumferentia Circuli_, cujus _Centrum_ O; reliquæ AMH, ANH ſunt _Cycliformes_.

6. Peculiare eſt in ſecundo gradu, quòd ſi n& lt; c, detur una tan-
tùm radix.

7. In hac radicum maxima (quæ & minima eſt in nona ſerie) eſt
AH = {_b_/2} + √{_bb_/4} + _cc_.

8. Curva HL λ eſt _hyperbola æquilatera_, cujus _ſemiaxis_ OH; re-
liquæ HMμ, HNν ſunt _hyperboliformes_; unde patet in ſerie nona
ſemper unam, & hanc unicam radicem haberi.

93. Series decima.

Fig. 216.

_a_ + _b_ - {_cc_/_a_} = _n_.

_aa_ + _ba_ - _cc_ = _nn_.

_a_ 3 + _baa_ - _cca_ = _n_ 3 .

_a_ 4 + _ba_ 3 -_ccaa_ = _n_ 4 , & c.

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer