in quarto _a_ + {_cc_/4_a_}& gt;_ n_; quæ tamen inæqualitas eo minor eſt, quò
AE (vel _n_) major exiſtit.
_a_ + {_cc_/_a_} = _n_.
_a_ + {_cc_/_a_} = {_nn_/_a_}.
_a_ + {_cc_/_a_} = {_n_
3
/_aa_}.
_a_ + {_cc_/_a_} = {_n_
4
/_a_
3
}.
Poſſit hæc ſeries explicari juxta præcedentium modum ſecundum,
& eaſdem adhibendo curvas LXL, MXM, NXN; quarum nimi-
rum proprietas eſt, ut rectâ GK ductâ ad AH utcunque perpendicu-
lari, ſit GL = {_nn_/AG}; & GM = {_n_
3
/AGq}; & GN = {_n_
4
/AGcub}.
Nam ſi fiat angulus HAR ſemirectus, & utcunque ducatur GEO
ad AH perpendicularis; & ſit GE. _c_: :_c_. EO; & per O intra a-
ſymptotos AD, AR deſcribatur _hyperbola_ OO; hujuſce cum expo-
ſitis lineis LXL, MXM, NXN interſectiones, radices _a_ reſpectivas
determinabunt; ductis utique LG, MG, NG ad AH perpendicu-
laribus; erunt interceptæ AG ipſis _a_ æquales reſpectivè.
Poſſint conſimili modo ſubſequentes omnes æquationes explicari; ſed eas modo duntaxat priore dabimus expoſitas.
85.
Series quinta.
Fig. 213.
{_cc_/_a_} - _a_ = _n_.
_cc_ - _aa_ = _nn_.
_cca_ - _a_
3
= _n_
3
.
_ccaa_ - _a_
4
= _n_
4
.