Full text: Barrow, Isaac: Lectiones Opticæ & Geometricæ

73. _Theor_. VI.

Sit rurſus AMB curva quævis (cujus axis AD, baſis DB) & curvæ EXK, HZO ita verſus ſe, & axes AD, αβ relatæ, ut arbi-
trariè in curva AMB accepto puncto M, & ductâ MPX ad AD per-
pendiculari, ſumptâ αμ = arc AM, ductâ μZ ad αβ perpendiculari,
poſitóque rectam TM curvam AMB tangere; ſit TP. TM: : μ Z. PX; erunt ſpatia ADKE, α β OH æqualia ſibi.

73.1.

Fig. 204.

74. _Theor_. VII.

Sit ſpatium quodpiam [?] ADB (rectis DA, DB, & curvâ AMB
definitum) ſint item curvæ EXK, HZO ità relatæ, ut ſi quodvis
capiatur punctum M in curva AMB, projiciatur recta DMX, ſuma-
tur αμ = arc AM; ducatur μZ ad rectam αβ perpendicularis; ſit
DT perpendicularis ipſi DM; recta MT curvam AMB tangat; ſit
TD. TM: : DM x μ Z. DX q; erit ſpatium αβ OH ſpatii EDK
duplum.

74.1.

Fig. 204,
205.

Sed horum hic eſto terminus.

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer