Full text: Barrow, Isaac: Lectiones Opticæ & Geometricæ

61. _Probl_. IV.

Sit angulus BDHrectus, & BF ad DH parallela; & _aſymptotis_
DB, DH per F deſcripta ſit _hyperbola_ FXG; item centro Ddeſcrip-
tus ſit circulus KZL; ſit denuò [?] curva AMB talis, ut in hac ſumpto
quocunque puncto M, & per hoc trajectâ rectâ DMZ, item ſumptâ
DI = DM; & ductâ IX ad BF parallelâ, ſit _ſpatium hyperbolicum_
BFXI æquale duplo _circulari ſectori_ ZDK; curvæ AMB tangens
ad M determinetur.

61.1.

Fig. 187.

Ducatur DS ad DM perpendicularis; ſitque DB x BF = Rq; fiátque DK. R: : R. P; tum DK. P: : DM. DT; & connecta-
tur TM; hæc curvam AMB tanget.

Adnotetur curvæ AMB hanc eſſe proprietatatem; ut DI ſit inter
DB, DO (vel DA) eodem ordine _media proportionalis Geometricè_,
quo arcus KZ inter _o_ [?] (ſeu nihilum) & arcum KL eſt medius _Arith-_
_meticè_. hoc eſt, ſi DI ſit numerus in ſerie _Geometricè proprtionalium_
incipiente à DB, & terminatâ in DA; ac _o_ [?] , KL ſint Logarithmi
ipſarum DB, DA; erit KZLogarithmus ipſius DI. Vel
retrò (prout vulgares _Logarithmi_ procedunt, ſi DI ſit numerus in
ſerie _Geometrica_ exorſa à DO, & deſinente in DB ac _o_ [?] ſit _Logarith-_
_mus_ ipſius DO, & arcus LK ipſius DB, erit arcus LZ _Logarithmus_
ipfius DI.

Quod ſi abſolutè conſtruatur curva AMB, ejúſque _tangens Me-_
_chanicè_ deprehendatur, inde patet _hpperbolici ſpatii Cycliſmum_ dari,
vel _Circuli hyperboliſmum_.

Hujuſce _Spiralis_ naturam, ac dimenſionem (ut & Spatii BDA di-
menſionem) luculentè proſecutus eſt præclariſſimus D. _Walliſſius [?] _, in
Libro dè [?] _Cycloide_; quapropter de illa plura reticeo.

62. _Probl_. V.

Sit ſpatium quodpiam EDG (rectis DE, DG, & linea ENG
comprehenſa) & data quædam R; curva AMB reperiatur talis, u
ſi utcunque à D projiciatur recta DNM, & DT ad hanc perpendi t [?]
cularis ſit, & MT curvam AMB contingat; ſit DT. DM: : R-
DN.

62.1.

Fig. 188.

Sit curva KZL talis, ut DZ = √ R x DN; ſumptâque liberè

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer