Full text: Barrow, Isaac: Lectiones Opticæ & Geometricæ

IV. Iiſdem ſtantibus, ſit curva AYI talis, ut ordinata FY ſit in-
ter congruas FM, FZ proportione media; erit _ſolidum_ ex ſpatio αδβ
circa axem α β rotato factum æquale _ſolido_, quod à _ſpatio_ ADI circa
axem AD converſo procreatur.

43.1.

Fig. 156,
157.

Nam eſt MN. NR: : PM. MF: : PM x MF. MF q: :FZ x
FM. MFq. unde MN x MFq = NR x FZ x FM; hoc eſt
μ ν x μ φ q = NR x FYq. Unde liquet Propoſitum.

V. Simili ratione colligetur, ſi FY ponatur inter FM, FZ _bime-_
_media_, fore _ſummam cuborum_ ex applicatis (quales μ φ) à curva α φ δ
ad rectam α β, æqualem _ſummæ cuborum_ ex explicatis à curva AYI ad
rectam AD. paríque modo ſe res habebit quoad cæteras _poteſta-_
_tes._

43.1.

Fig. 156,
157.

VI. Porrò, ſtantibus reliquis, ſit curva VXO talis, ut EX ipſi MP
æquetur; & curva πξψ talis, ut μ ξ æ quetur ipſi PF; erit ſpatium
α π ψ β æqua le ſpatio DV OB.

43.1.

Fig. 156.

Nam eſt MN. MR: : MP. PF; adeoque MN x PF = MR
x MP. hoc eſt μ ν x μ ξ = ES x EX. vel rectang. ET = rectang. μ σ. Unde liquet Propoſitum.

VII. Subnotetur hoc: Si curva AB ſit _Parabola_, cujus _Axis_ AD,
_parameter_ R; erit curva VXO _byperbola_, cujus _centrum_ D, _Axis_ DV,
cujuſque _parameter_ axi R æquatur (ſcilicet ob EXq = (PMq =
PFq + FMq = {R q/4}+FMq = {R q/4}+ DEq = ) DVq+ DEq). item _ſpatium_ α β ψ π erit _Rectangulum_; quoniam ſingulæ applicatæ
μ ξ ipſi {R/2} æquantur. Conſtat itaque dato _ſpatio byperbolico_ DVOB
curvam AMB dari; & viciſſim. Hoc obiter.

43.1.

Fig. 156.

VIII. Adnotari poſſet etiam omnia ſimul quadrata ex applicatis
ad rectam α β à curva π ξ ψ æquari rectangulis omnibus ex PE, EX
ad rectam DB applicatis (ſeu computatis); cubos ex μ ξ æquari ipſis
PFq x EX; ac ità porrò.

43.1.

Fig. 157.

IX. Adjungatur etiam (productâ PM Q) ſi ponatur FZ æqua-
lis ipſi PQ, & μ φ ipſi AQ; _ſpatium_ α β δ _ſpatio_ AD LK æ-
quari.

43.1.

Fig. 157.
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer