Full text: Barrow, Isaac: Lectiones Opticæ & Geometricæ

4. Cùm Z cadit inter puncta D, K; fac DZ + {I/R} KZ. DZ : :
DK. DY; & cape DY verſus A.

_V._ Ad lentem plano-concavam diverg.

Fig. 156,
157.

_VI._ Ad lentem plano convexam converg.

Fiat {R. I : : AB. BZ; & \\ {I/R} KZ - DZ. DZ : : DK. DY.

_VII._ Adlentem convexo-planam diverg.

Fig. 157.

_VIII._ Ad lentem concavo-planam converg.

1. Si AB & gt; {R/I} AC, puncta Z, & Y ad lentis partes puncto A
adverſas reperientur, facto AB - {R/I} AC. AB : : BC. BZ. & I. R : : DZ. DY.

2. Si AB = {R/I} AC, imago infinitè diſtabit.

3. Si AB & lt; {R/I} AC; deprehendentur Z, & Y verſus A, facto
{R/I} AC - AB. AB : : BC. BZ; & I. R : : DZ. DY.

_IX._ Ad lentem concavo-planam diverg.

Fig. 158.

_X._ Ad lentem convexo-planam converg.

Si A cadat extra BC, fac AB - {R/I} AC. AB : : BC. BZ; ſin
A cadat inter B, & C, fac AB + {R/I} AC. AB : : BC. BZ; tum
fiat I. R : : DZ. DY.

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer