Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

— (401) 
in S et erit parallela ad chordam Mm (27.§.) 
In triangulis similibus Mmr et STV se habet 
Mr: mr = SV: TV, et hine erit SV X mr 
TVXMr. Sed SV— Og, mr — Pp, TV—2AV 
(21. §.) = 2RS — 2(OR—80), et Mr — Nn. 
Proinde erit Qq x Pp — 2(QR—SO) X Nn 
2QRXNn—2SQXNn; seu trapezium MPpm 
— 2MNnm — 280 X Nn. Sed si chbida Mm 
concipiatur infinite parva, linea S0 evanescet, 
et tum erit MPpm— 2MNnm. Supponatur nunc 
areas AmMCB et AmMCD divisas esse in talia 
trapezia infinita parva, et quodlibet trapezium 
MPpm aequabitur duplo trapezio corresponden 
ti MNnm. Igitur area AMCB erit duplum areae 
AMCD, seu AMCB — 2AMCD, et si utrimque 
addatur area AMCD, fiet AMCB + AMCD seu 
rectangulum ABCD — 3AMCD. Igitur erit 
AMCD = JABCD, et AMCB — 3 ABCD. Ergo 
area parabolica, comprehensa inter ordinatam 
BC et abscissam AB, aequatur duabu, tertiis 
partibus rectanguli AB XNC. 
II. Elipeis. 
30. §. Definitiones. 
Ellipsis est linea curva in qua summa di 
stantiarum cujusvis puneti M (Fig. 298) a duo 
bus punctis datis F et G aequalis est datae lineae 
rectae IL. Itaque punctum M erit in Ellipsi, 
si fuerit MF +MG—IL. Puncta F et G dicun 
Ce
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer