Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

— (314) — 
BFC etc. ; et si priora a posterioribus auferantur, 
residua, minirum trapezia EeaA, AabB, BbeC 
etc, erunt quoque congruentia. Jam si per 
punctum medium l unius lateris Aa pyramidis 
truncatae ducatur planum lpgrk ad basin paral 
lelum, illud bissecabit etiam reliquae latera 
trunci (37. §.), et sectio erit polygonum regu 
lare; cujus latera aequalia erunt ipsi kl. Sed 
area trapezii BeaA — kl X Hh, et si numerus 
laterum trunci dicatur n, ipsius superficies la 
teralis erit — n X kl X Hh — PX Hh, in qua 
expressione litera P primetrum mediae sectionis 
lpgrk denotat. 
Si pyramis truncata fuerit obliqua, singu 
la trapezia AabB, BbcC etc. determinari debe 
bunt, et summa dabit superficiem lateralem. 
146. §. Theorema. 
Si in duabus pyramidibus unus angulus so 
lidus ad basin fuerit contentus inter tria plana 
similia, in eodem ordine disposita; etiam reli 
qua plana lateralia homologa erunt similia, et 
anguli solidi homologi aequales. 
Dem. Sit basis ABCDE (Fig. 258.) similis 
basi abcde, et triangula AFB, AFE similia trian 
gulis afb, afe; et erit angulus planus EAB— eab, 
FAB — fab, FAE — fae proinde angulus soli 
dus A — a (60. §). Inde etiam inclinatio trian 
guli AFB ad basin ABCDE aequalis erit inclina 
tioni trianguli afb ad basin abcde. Cum porro
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer