Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

(294) — 
aequale axi CH; quod eodem modo de quoli 
bet alio latere cylindri probari potest. 
116. §. Coroll. 
Si cylinder secetur plano ad basin paralle 
lo, sectio erit congruens basi. 
Dem. Sit MNPQ (Fig. 242.) communis se 
ctio alicujus plani ad basin ADBE paralleli cum 
superficie curva cylindri. Per quodlibet pun 
ctum N hujus sectionis et per axem CH. ducatur 
planum DKHC, quod secabit planum MNPQ in 
linea recta NO parallela ad DC (26. §.), et 
cum etiam sit DN parallela ad CO (115. §.), 
figura DNOC erit parallelogrammum, proinde 
NO — DC. Eodemmodo probatur esse OP—CB, 
00 — CE etc. Cum vero sit DC= CBE CE— 
etc., erit quoque NOE OP —00— etc. Unde 
liquet sectionem MNPQ esse circulum, et qui 
dem congruentem basi, quia NO = DC. 
117. §. Theorema. 
Soliditas cylindri aequatur producto ex ba 
si in altitudinem. 
Dem. Concipiatur basi inscriptum esse po 
lygonum regulare ABCDEF (Fig. 244.); ducan 
tur per puncta A, B, C, etc., et per axem PQ 
plana AGPQ, BHPQ, CKPQ etc., et jungantur 
chordae GH, HK, KL etc. Cum sint radii GP, 
HP paralleli et aequales radiis AQ et BQ, erit 
etiam angulus GPH — AQB (34. §.), et proinde 
triangl. GPH congruens triangl. AQB. Eodem
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer