Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

(281) 
DE: FG — AD XAE: AF XAG 
proinde erit ex aequo 
AB: AC = DE: FG. Q. e. d. 
98. §. Theorema. 
Parallelepipeda rectangula se habent uti 
producta basium in altitudines. (Fig. 235.). 
Dem. Abscindatur AM — EL, et per M 
ducatur planum basi AC parallelum. Cum pa 
rallelepipeda EC et MC sint super eadem basi 
AC, illa se habebunt uti altitudines (96. §.). 
EC: MC = AE: AM — AE: FL. 
Quia porro parallelepipeda MC et LH ae 
quales altitudines habent, AM — FL, erunt il 
la in ratione basium (97. §.). MC: LH — 
ABCD: FGHK. Jam si ambae proportiones com 
ponantur, prodibit EC: LH — AE X ABCD: 
FLXFGHK. Q. e. d. 
99. §. Coroll. 
Rectangula se habent uti producta laterum 
contigvorum, ergo ABCD: FGHK — AB X AD: 
FG XFK. 
Si haec proportio multiplicetur per istam 
AE: FL — AE: FL, erunt quoque producta 
proportionalia, nimirum 
AEX ABCD: FLX FGHK— AB XADX 
AE: FGXFKXFL. 
Igitur se habebit ex aequo (98. §.) 
EC: LH— ABXADX AE: FGXTKXFL;
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer