Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

— ( 231) 
Porro etiam BE — BF, AB — AB, et an 
gulus ABE — ABF, quia AB perpendicularis est 
ad BE. Hinc ergo triangula ABE, ABF con 
gruunt, et latus AE — AF. 
4to. Jam cum sit latus CE — DF (ex 1mo 
latus AC — AD, et latus AE AF (ex 3tio.) 
triangula ACE, ADE erunt congruentia, proin 
de angulus AEC — AFD. 
5to. Cum igitur sit latus EO — FH (ex 2do) 
— 
latus AE — AF (ex 3tio), et angulus AEG 
AFH (ex 4to.), triangula AEG, AFH erunt con 
gruentia, et inde latus AG — AI. 
640. Denique habeturlatus BG — BH(ex 2do), 
latus AB — AB, et latus AG — AH (ex 540.), 
proinde triangula ABG, ABH suht congruen 
tia, hinc anguius ABG — ABI, ergo AB per 
pendicularis ad HG. Igitur cum recta AB per 
pendicularis sit ad quamlibet rectam in plano 
MN per eam ductam, illa erit perpendicularis 
ad hoc plauum (11. §). 
Demon, alia. Per aliquod punctum G rectae 
BG ducatur GK parallela ad BC, hat KE— BK, 
et per G ducatur recta EG. Jungantur etiam 
AE, AG, AC. Cum bit EK — KB, erit quo 
que LO— CC. Proinde in triangulis AEC et 
BEC basis EC lineis rectis AG et BG bissécatur, 
-2 
inde erit AE + AC — 2AG + 2EG 
2 
BE + B0 — 2B6 + 2bG.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer