Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

— ( 161) — 
peripheria divisa erit in quatuor partes aequales, 
et proinde ADBE tetragonum regulare (340. §.) 
346. §. Coroll. 
Per continuatas bissectiones arcuum AD 
DB etc. peripheria dividitur in 8, 16 etc. partes 
aequales. Ergo circulo polygona regularia in 
scribi possunt, quorum numerus laterum est 
4.27—1. 
347. §. Theorema. 
Latus decagoni regularis circulo inscripti 
aequale est majori segmento radii in ratione me 
dia et extrema secti. (Fig. 188.) 
Dem. Supponatur radius in puncto L se 
ctus in ratione media et extrema (308, §.) ni 
mirum AL: LC — LC: AC, et sit chorda AB 
aequalis majori segmento LC. Ducto radio BG 
in triangulo aequicruro ABC anguli ad basim 
erunt dupla illius ad verticem, seu BAC— ABC 
= 2ACB. (310. §.) 
Quoniam vera sit angulus BCG — BAC + 
ABC — 4ACB, iste angulus dividi poterit in qua 
tuor angulos inter se et angulo ACB aequale 
nimirum ACB— BCD DCE ECF FCC. 
Et quia angulis ad centrum aequalibus corres 
pondent arcus aequales, erit etiam arcus AB 
BD = DE — EF — FG. Ergo arcus AB erit 
quinta pars semiperipheriae, seu decima pars 
totius peripheriae, et chorda AB — LC erit la 
tus decagoni regularis ABDEFGH etc. Q. e. d.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer