Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

(116) — 
est parallela BC, proinde se habet AF : BF 
AG: CG. 
In triangulo AHK lateri HK ducta est paralle 
la FG, proinde se habet AF: FH = AG: GK. 
In his duabus proportionibus antecedentes 
sunt aequales, igitur consequentes etiam sunt 
proportionales, et quidem directe. Erit ergo 
BF: FH — CG: GK. Eodem plane modo pro 
batur esse FH: IID — GK: KE. Proinde erit 
BF: FH: HD: etc. — CG: GK: KE: etc. 
264. §. Coroll. 3. Si duae parallelae AB, 
CD secentur a tribus vel pluribus rectis MC, 
ME, MF etc, quae in eodem puncto M concur. 
runt, segmenta parallelarum inter has rectas 
erunt proportionalia. (Fig. 140.) 
Dem. In triangulo MCE basi CE ducta est 
parallela AG, proinde se habet MA: MC  
AG: CE. 
Et in triangulo MCF basi CF ducta est pa 
rallela AH, proinde se habet MA: MC—AH: CF. 
Itaque erit ex aequo. AG: CE = AH: CF, 
seu, alternando terminos medios, AG: AH — 
CE: CF; et subtrahendo AG: AIl — AG  
CE: CF — CE, seu AG: GH — CE: EF. 
Eodem modo probatur etiam esse GH: HB 
— EF: FD. Proinde erit AG: GH: HB: ete. 
CE: EF: FD: etc. 
265. §. Coroll. 4. Si fuerit in parallelis AG: GH 
— CE: EF, et puncta A, G et H cum pun 
otis C, E et F lineis rectis conjungantur, hae re¬
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer